搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究

黄小林 侯丽珍 喻博闻 陈国良 王世良 马亮 刘新利 贺跃辉

引用本文:
Citation:

Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究

黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉

Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures

Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui
PDF
导出引用
  • 采用乙酰丙酮铜为原料, 通过化学气相沉积大批量制备出Cu/C核/壳纳米颗粒和纳米线. 研究结果表明, 通过控制沉积温度可对Cu/C核/壳纳米材料的形貌和结构进行很好的控制. 比如, 沉积温度为400 ℃时可获得直径约200 nm的Cu/C核/壳纳米线, 沉积温度为450 ℃ 时可获得直径约200 nm的Cu/C核/壳纳米颗粒和纳米棒的混合产物, 沉积温度为600 ℃时可获得直径约22 nm的Cu/C核/壳纳米颗粒. 获得的Cu/C核/壳纳米结构是由一个新颖的凝聚机理形成的, 而这种机理不同于著名的溶解-析出机理. 紫外-可见光谱和荧光光谱分析结果表明: Cu/C核/壳纳米线和纳米颗粒均在225 nm处出现Cu的吸收峰, 同时在620 和616 nm处分别出现了纳米线和纳米颗粒的表面等离子共振吸收峰. Cu/C核/壳纳米线在312 和348 nm处、 Cu/C核/壳纳米颗粒在304 和345 nm处出现荧光发射谱峰.
    Copper/carbon core/shell structure nanoparticles and nanowires are successfully synthesized by using a one-step low-temperature metal-organic chemical vapor with copper (II) acetylacetonate powders as precursor. Morphology and structure of copper/carbon core/shell nanomaterial can be well controlled by deposition temperature For instance, copper/carbon core/shell nanowires about 200 nm in diameter can be produced at 400 ℃. The mixture of nanowires and nanoparticles can be produced at 450 ℃. At 600 ℃ the production is the copper/carbon core/shell nanoparticles about 22 nm in diameter. The obtained copper/carbon core/shell nanostucture is found to be formed by a novel coalescence mechanism that is quite different from the well-known dissolution-precipitation mechanism The optical property of copper/carbon core/shell nanostructure is investigated Uv-vis spectrometer and the fluorescence spectrometer (PL). The results show that the surface plasma resonance peaks of copper/carbon core/shell nanowire and nanoparticle are located at 620 nm and 616 nm respectively. At 225 nm, copper absorbing peak can be found. The PL peaks of copper/carbon core/shell nanowires are located at 312 nm and 348 nm, and the PL peaks of copper/carbon core/shell nanoparticles are observed at 304 nm and 345 nm.
    • 基金项目: 国家自然科学基金(批准号: 50804057, 51074188)、中南大学博士后基金和湖南省教育厅自然科学基金(批准号: 08C580)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50804057, 51074188), the Central South University Postdoctoral Fundation and the Natural Science Foundation of Hunan Province, China (Grant No. 08C580).
    [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Zhang H L, Lei H L, Tang Y J, Luo J S, Li K, Deng X C 2010 Acta Phys. Sin. 59 471 (in Chinese) [张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣 2010 物理学报 59 471]

    [3]

    Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926

    [4]

    Wang G C, Yuan J M 2005 Acta Phys. Sin. 52 970 (in Chinese) [王贵春, 袁建民2005 物理学报 52 970]

    [5]

    Rathmell A R, Wiley B J 2011 Adv. Mater. 23 4798

    [6]

    Huaman J L C, Sato K, Kurita S, Matsumoto T, Jeyadevan B 2011 J. Mat. Chem. 21 7062

    [7]

    Zhang B S, Xu B S, Xu Y, Gao F, Shi P J, Wu Y X 2011 Tribol. Int. 44 878

    [8]

    Wang S L, Huang X L, He Y H, Huang H, Wu Y Q, Hou L Z, Liu X L, Yang T M, Zou J Huang B Y 2012 Carbon 50 2119

    [9]

    Wang S L, He Y H, Liu X L, Huang H, Zou J, Song M, Huang B Y, Liu C T 2011 Nanotechnology 22 405704

    [10]

    Luechinger N A, Athanassiou E K, Stark W J 2008 Nanotechnology 19 445201

    [11]

    Xu W, Zhang Y, Guo Z, Chen X, Liu J, Huang X, Yu S H 2012 Small 8 53

    [12]

    Athanassiou E K, Grass R N, Stark W J 2006 Nanotechnology 17 1668

    [13]

    Yen M Y, Chiu C W, Hsia C H, Chen F R, Kai J J, Lee C Y, Chiu H T 2003 Adv. Mater. 15 235

    [14]

    Chen X H, Wu G T, Deng F M, Wang J X, Yang H S, Wang M, Lu X N, Peng J C, Li W Z 2001 Acta Phys. Sin. 50 1264 (in Chinese) [陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸2001 物理学报 50 1264]

    [15]

    Zhang X F, Dong X L, Huang H, Wang D K, Lü B, Lei J 2007 Nanotechnology 18 275701

    [16]

    Li H, Kang W, Xi B, Yan Y, Bi H, Zhu Y, Qian Y 2010 Carbon 48 464

    [17]

    Schaper A K, Hou H, Greiner A, Schneider R, Phillipp F 2004 Appl. Phys. A: Mater. Sci. Process. 78 73

    [18]

    Vertoprakhov V N, Krupoder S A 2000 Russ. Chem. Rev. 69 1057

    [19]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312

    [20]

    Khatouri J, Mostafavi M, Amblard J, Belloni J 1992 Chem. Phys. Lett. 191 351

    [21]

    Lisiecki I, Pileni M P 1993 J. Am. Chem. Soc. 115 3887

    [22]

    Mulvaney P 1996 Langmuir 12 788

    [23]

    Siwach O P, Sen P 2008 J. Nanopart. Res. 10 107

    [24]

    O'connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C 2002 Science 297 593

    [25]

    Huang T, Murray R W 2001 J. Phys. Chem. B 105 12498

    [26]

    Garuthara R, Siripala W 2006 J. Lumin. 121 173

  • [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Zhang H L, Lei H L, Tang Y J, Luo J S, Li K, Deng X C 2010 Acta Phys. Sin. 59 471 (in Chinese) [张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣 2010 物理学报 59 471]

    [3]

    Zhang G Y, Wang E G 2003 Appl. Phys. Lett. 82 1926

    [4]

    Wang G C, Yuan J M 2005 Acta Phys. Sin. 52 970 (in Chinese) [王贵春, 袁建民2005 物理学报 52 970]

    [5]

    Rathmell A R, Wiley B J 2011 Adv. Mater. 23 4798

    [6]

    Huaman J L C, Sato K, Kurita S, Matsumoto T, Jeyadevan B 2011 J. Mat. Chem. 21 7062

    [7]

    Zhang B S, Xu B S, Xu Y, Gao F, Shi P J, Wu Y X 2011 Tribol. Int. 44 878

    [8]

    Wang S L, Huang X L, He Y H, Huang H, Wu Y Q, Hou L Z, Liu X L, Yang T M, Zou J Huang B Y 2012 Carbon 50 2119

    [9]

    Wang S L, He Y H, Liu X L, Huang H, Zou J, Song M, Huang B Y, Liu C T 2011 Nanotechnology 22 405704

    [10]

    Luechinger N A, Athanassiou E K, Stark W J 2008 Nanotechnology 19 445201

    [11]

    Xu W, Zhang Y, Guo Z, Chen X, Liu J, Huang X, Yu S H 2012 Small 8 53

    [12]

    Athanassiou E K, Grass R N, Stark W J 2006 Nanotechnology 17 1668

    [13]

    Yen M Y, Chiu C W, Hsia C H, Chen F R, Kai J J, Lee C Y, Chiu H T 2003 Adv. Mater. 15 235

    [14]

    Chen X H, Wu G T, Deng F M, Wang J X, Yang H S, Wang M, Lu X N, Peng J C, Li W Z 2001 Acta Phys. Sin. 50 1264 (in Chinese) [陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸2001 物理学报 50 1264]

    [15]

    Zhang X F, Dong X L, Huang H, Wang D K, Lü B, Lei J 2007 Nanotechnology 18 275701

    [16]

    Li H, Kang W, Xi B, Yan Y, Bi H, Zhu Y, Qian Y 2010 Carbon 48 464

    [17]

    Schaper A K, Hou H, Greiner A, Schneider R, Phillipp F 2004 Appl. Phys. A: Mater. Sci. Process. 78 73

    [18]

    Vertoprakhov V N, Krupoder S A 2000 Russ. Chem. Rev. 69 1057

    [19]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312

    [20]

    Khatouri J, Mostafavi M, Amblard J, Belloni J 1992 Chem. Phys. Lett. 191 351

    [21]

    Lisiecki I, Pileni M P 1993 J. Am. Chem. Soc. 115 3887

    [22]

    Mulvaney P 1996 Langmuir 12 788

    [23]

    Siwach O P, Sen P 2008 J. Nanopart. Res. 10 107

    [24]

    O'connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C 2002 Science 297 593

    [25]

    Huang T, Murray R W 2001 J. Phys. Chem. B 105 12498

    [26]

    Garuthara R, Siripala W 2006 J. Lumin. 121 173

  • [1] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [2] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [3] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算. 物理学报, 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [4] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [5] 范巍, 曾雉. 氧化镁纳米多晶的微结构和磁性. 物理学报, 2014, 63(4): 047503. doi: 10.7498/aps.63.047503
    [6] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [7] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [8] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [9] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [10] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [11] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [12] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [13] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [14] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [16] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究. 物理学报, 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [17] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [18] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [19] 王 丽, 王海波, 王 涛, 李发伸. CoFe2O4纳米颗粒的结构、磁性以及离子迁移. 物理学报, 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
    [20] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
计量
  • 文章访问数:  5262
  • PDF下载量:  921
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-09
  • 修回日期:  2013-01-11
  • 刊出日期:  2013-05-05

/

返回文章
返回