搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N00N态的Wigner函数及N00N态作为输入的量子干涉

徐学翔 张英孔 张浩亮 陈媛媛

引用本文:
Citation:

N00N态的Wigner函数及N00N态作为输入的量子干涉

徐学翔, 张英孔, 张浩亮, 陈媛媛

Wigner function of N00N state and quantum interference with N00N state as input

Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan
PDF
导出引用
  • 根据量子力学相干态表象下的Wigner函数公式, 推导了N00N态在相空间的Wigner分布函数的解析表达式. 基于相空间方法, 研究N00N态作为输入的量子干涉. 推导了与输入光场参数和干涉仪参数相关的输出端探测光子概率的解析表达式, 并进行了数值分析. 从分析结果发现, 当相移参数φ取0和π时, 输出量子态仍为N00N态. 当输入2002态时, 输出结果总是2002态, 与相移参数无关. 随着N的增加, 条件概率随相位的分布峰数一般只有一个, 两个, 三个或四个, 且峰变得更窄. 这些结果可以为实验提供理论指导.
    Using the formula of Wigner function in coherent representation, we have obtained the analytical expression for Wigner function of N00N state. Based on phase space method, we study the quantum interference with N00N state as input. We derive the analytical expression of conditional probability related with the input parameter N and phase parameter φ and analyze it numerically. It is shown that, when φ is 0 or π, the output is just N00N state. It is also shown that, for 2002 state as input, the output must be 2002 state, which is independent of phase parameters. Moreover, as the number of input photon N increases, the phase probability distributions remain to have one, two, three and four peaks and get narrower. All these results can offer theoretical reference for experiments.
    • 基金项目: 国家自然科学基金 (批准号: 11175113, 11264018, 11247301), 江西省自然科学基金 (批准号: 2011BAB202004)和江西省教育厅科技项目 (批准号: GJJ12171)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113, 11264018, 11247301), the Natural Science Foundation of Jiangxi Province, China (Grant No. 2011BAB202004), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ12171).
    [1]

    Hariharan P 2003 Optical interferometry, (2nd Edn) (Elsevier)

    [2]

    Taylor G I 1909 Proceedings of the Cambridge Philosophical Society 15 14

    [3]

    Paul H 1986 Rev. Mod. Phys. 58 209

    [4]

    Dirac P A M 1930 The Principles of Quantum Mechanics (Clarendon: Oxford University Press)

    [5]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 204

    [6]

    Mandel L 1999 Rev. Mod. Phys. 71 S274

    [7]

    Glauber R J 1995 Am. J. Phys. 63 12

    [8]

    Long G L, Deng F G, Zeng J Y 2011 Recent Progress in Quantum Mechanics, fifth volume (Beijing: Tsinghua University Press) [龙桂鲁, 邓富国, 曾谨言 2011 量子力学新进展 第五辑 (北京: 清华大学出版社)]

    [9]

    Bahder T B, Lopata P A 2006 Phase Sensitivity of a Mach-Zehnder Quantum Sensor (Conference proceedings of QCMC)

    [10]

    Escher B M, de Matos Filho R L, Davidovich L 2011 Nature Phys. 7 406

    [11]

    Giovannetti V, Lloyd S, Maccone L 2011 Nature Photon. 5 222

    [12]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1986 Phys. Rev. Lett. 59 2153

    [13]

    O'Brien J L 2007 Science 318 1393

    [14]

    Dorner U, Dobrzanski R D, Smith B J, Lundeen J S, Wasilewski W, Banaszek K, Walmsley I A 2009 Phys. Rev. Lett. 102 040403

    [15]

    Gerry C C, Mimih J 2010 Contemp. Phys. 51 497

    [16]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [17]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)

    [18]

    Dowling J P 2008 Contemp. Phys. 49 125

    [19]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [20]

    Ekert A K, knight P L 1991 Phys. Rev. A 43 3934

    [21]

    Windhager A, Suda M, Pache C, Peev M, Poppe A 2011 Opt. Commu. 284 1907

    [22]

    Xu X X, Jia F, Hu L Y, Duan Z L, Guo Q, Ma S J 2012 J. Mod. Opt. 59 1624

    [23]

    Schleich W P 2001 Quantum Optics in Phase space (Berlin: Verlag)

    [24]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661

    [25]

    Zhang H L, Jia Fang, Xu X X, Guo Q, Tao X Y, Hu L Y 2013 Acta Phys. Sin. 62 014208

    [26]

    Hu L Y, Xu X X, Fan H Y 2010 J. Opt. Soc. Am. B 27 286

    [27]

    Glauber R 1963 Phys. Rev. 131 2766

    [28]

    Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag) Appendix A

    [29]

    Hu L Y, Fan H Y 2009 Chin Phys. B 18 4657

    [30]

    Leonhardt U 1997 Measuring the quantum state of light (Cambridge: Cambridge University Press)

    [31]

    Wang K, Zhu S 2003 Euro Phys. Lett. 64 22

    [32]

    Wang K, Yang G 2004 Chin. Phys. Lett. 21 302

  • [1]

    Hariharan P 2003 Optical interferometry, (2nd Edn) (Elsevier)

    [2]

    Taylor G I 1909 Proceedings of the Cambridge Philosophical Society 15 14

    [3]

    Paul H 1986 Rev. Mod. Phys. 58 209

    [4]

    Dirac P A M 1930 The Principles of Quantum Mechanics (Clarendon: Oxford University Press)

    [5]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 204

    [6]

    Mandel L 1999 Rev. Mod. Phys. 71 S274

    [7]

    Glauber R J 1995 Am. J. Phys. 63 12

    [8]

    Long G L, Deng F G, Zeng J Y 2011 Recent Progress in Quantum Mechanics, fifth volume (Beijing: Tsinghua University Press) [龙桂鲁, 邓富国, 曾谨言 2011 量子力学新进展 第五辑 (北京: 清华大学出版社)]

    [9]

    Bahder T B, Lopata P A 2006 Phase Sensitivity of a Mach-Zehnder Quantum Sensor (Conference proceedings of QCMC)

    [10]

    Escher B M, de Matos Filho R L, Davidovich L 2011 Nature Phys. 7 406

    [11]

    Giovannetti V, Lloyd S, Maccone L 2011 Nature Photon. 5 222

    [12]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1986 Phys. Rev. Lett. 59 2153

    [13]

    O'Brien J L 2007 Science 318 1393

    [14]

    Dorner U, Dobrzanski R D, Smith B J, Lundeen J S, Wasilewski W, Banaszek K, Walmsley I A 2009 Phys. Rev. Lett. 102 040403

    [15]

    Gerry C C, Mimih J 2010 Contemp. Phys. 51 497

    [16]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [17]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)

    [18]

    Dowling J P 2008 Contemp. Phys. 49 125

    [19]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [20]

    Ekert A K, knight P L 1991 Phys. Rev. A 43 3934

    [21]

    Windhager A, Suda M, Pache C, Peev M, Poppe A 2011 Opt. Commu. 284 1907

    [22]

    Xu X X, Jia F, Hu L Y, Duan Z L, Guo Q, Ma S J 2012 J. Mod. Opt. 59 1624

    [23]

    Schleich W P 2001 Quantum Optics in Phase space (Berlin: Verlag)

    [24]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661

    [25]

    Zhang H L, Jia Fang, Xu X X, Guo Q, Tao X Y, Hu L Y 2013 Acta Phys. Sin. 62 014208

    [26]

    Hu L Y, Xu X X, Fan H Y 2010 J. Opt. Soc. Am. B 27 286

    [27]

    Glauber R 1963 Phys. Rev. 131 2766

    [28]

    Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag) Appendix A

    [29]

    Hu L Y, Fan H Y 2009 Chin Phys. B 18 4657

    [30]

    Leonhardt U 1997 Measuring the quantum state of light (Cambridge: Cambridge University Press)

    [31]

    Wang K, Zhu S 2003 Euro Phys. Lett. 64 22

    [32]

    Wang K, Yang G 2004 Chin. Phys. Lett. 21 302

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 张科, 李兰兰, 任刚, 杜建明, 范洪义. 量子扩散通道中Wigner算符的演化规律. 物理学报, 2020, 69(9): 090301. doi: 10.7498/aps.69.20200106
    [3] 张娜娜, 李淑静, 闫红梅, 何亚亚, 王海. 实验条件不完美对薛定谔猫态制备的影响. 物理学报, 2018, 67(23): 234203. doi: 10.7498/aps.67.20180381
    [4] 林惇庆, 朱泽群, 王祖俭, 徐学翔. 相位型三头薛定谔猫态的量子统计属性. 物理学报, 2017, 66(10): 104201. doi: 10.7498/aps.66.104201
    [5] 周洁, 杨双波. 周期受击陀螺系统随时间演化波函数的多重分形. 物理学报, 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [6] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [7] 范洪义, 梁祖峰. 相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径. 物理学报, 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [8] 周洁, 杨双波. 周期受击陀螺系统波函数的分形. 物理学报, 2014, 63(22): 220507. doi: 10.7498/aps.63.220507
    [9] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [10] 范洪义. 相干态在参数量子相空间的两维正态分布. 物理学报, 2014, 63(2): 020302. doi: 10.7498/aps.63.020302
    [11] 袁洪春, 徐学翔. 单双模连续压缩真空态及其量子统计性质. 物理学报, 2012, 61(6): 064205. doi: 10.7498/aps.61.064205
    [12] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频 . 物理学报, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [13] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性. 物理学报, 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [14] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数. 物理学报, 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [15] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干. 物理学报, 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [16] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析. 物理学报, 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [17] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数. 物理学报, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [18] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数. 物理学报, 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [19] 袁通全. 一类相空间中的准几率分布函数系. 物理学报, 2006, 55(10): 5014-5017. doi: 10.7498/aps.55.5014
    [20] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数. 物理学报, 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
计量
  • 文章访问数:  5944
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-31
  • 修回日期:  2013-02-22
  • 刊出日期:  2013-06-05

N00N态的Wigner函数及N00N态作为输入的量子干涉

  • 1. 江西师范大学物理与通信电子学院, 南昌 330022;
  • 2. 广州杰赛科技股份有限公司, 广州 510310
    基金项目: 国家自然科学基金 (批准号: 11175113, 11264018, 11247301), 江西省自然科学基金 (批准号: 2011BAB202004)和江西省教育厅科技项目 (批准号: GJJ12171)资助的课题.

摘要: 根据量子力学相干态表象下的Wigner函数公式, 推导了N00N态在相空间的Wigner分布函数的解析表达式. 基于相空间方法, 研究N00N态作为输入的量子干涉. 推导了与输入光场参数和干涉仪参数相关的输出端探测光子概率的解析表达式, 并进行了数值分析. 从分析结果发现, 当相移参数φ取0和π时, 输出量子态仍为N00N态. 当输入2002态时, 输出结果总是2002态, 与相移参数无关. 随着N的增加, 条件概率随相位的分布峰数一般只有一个, 两个, 三个或四个, 且峰变得更窄. 这些结果可以为实验提供理论指导.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回