搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-N共掺p型ZnO的第一性原理研究

李万俊 方亮 秦国平 阮海波 孔春阳 郑继 卞萍 徐庆 吴芳

引用本文:
Citation:

Ag-N共掺p型ZnO的第一性原理研究

李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳

First-principles study of Ag-N dual-doped p-type ZnO

Li Wan-Jun, Fang Liang, Qin Guo-Ping, Ruan Hai-Bo, Kong Chun-Yang, Zheng Ji, Bian Ping, Xu Qing, Wu Fang
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理赝势法对Ag-N共掺杂ZnO体 系以及间隙N和间隙H掺杂p型ZnO: (Ag, N)体系的缺陷形成能和离化能进行了研究. 结果表明, 在AgZn和NO所形成的众多受主复合体中, AgZn-NO受主对不仅具有较低的缺陷形成能同时其离化能也相对较小, 因此, AgZn-NO受主对的形成是Ag-N共掺ZnO体系实现p型导电的主要原因. 研究发现, 当ZnO: (Ag, N)体系有额外间隙N原子存在时, AgZn-NO受主对容易与Ni形成AgZn-(N2)m O施主型缺陷, 该施主缺陷的形成降低了Ag-N共掺ZnO的掺杂效率因而不利于p型导电. 当间隙H引入到ZnO: (Ag, N)体系时, Hi易与AgZn-NO受主对形成 受主-施主-受主复合结构(AgZn-Hi-NO), 此复合体的形成不仅提高了AgZn-NO受主对在ZnO中的固溶度, 同时还能使其受主能级变得更浅而有利于p型导电. 因此, H辅助Ag-N共掺ZnO可能是一种有效的p型掺杂手段.
    The formation energies and ionization energies of Ag-N dual-doped ZnO and interstitial N and H monodoped ZnO:(Ag,N) are investigated from the firstprinciples pseudo-potential approach based on density functional theory. It is found that AgZn-NO accepter pair has lower formation energy and ionization energy than Ag-N related to acceptor clusters, which demonstrates that the p-type conductivity of Ag-N dual-doped ZnO system is mainly attributed to the formation of the accepter pairs. Moreover, when ZnO:(Ag,N) system has additional N atoms in some interstitial sites of ZnO crystal, interstitial N atom and AgZn-NO accepter pair prefer to bind together to form AgZn-(N2)O donor complex which lowers doping efficiency, which is not conducive to p-type conductivity. For H doping in the ZnO:(Ag,N) system, the interstitial H atoms also prefer to bind to the AgZn-NO accepter pair, forming acceptor-donor-acceptor (AgZn-H#em/em#-NO) triplet, which not only enhances the incorporation of acceptors (AgZn-NO) but also gives rise to a shallower acceptor level in the band gap in p-type ZnO crystal. Thus, it is suggested that H-assisted Ag-N codoping is an effective method of p-type doping in ZnO.
    • 基金项目: 国家自然科学基金(批准号: 11075314, 50942021, 11247316, 11247317)和重庆市自然科学基金(批准号: 2011BA4031, 2013jjB0023)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075314, 5094202, 111247316, 11247317) and the Natural Science Foundation of Chongqing City, China (Grant Nos. 2011BA4031, 2013jjB0023).
    [1]

    Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Gantwell G, Harsch W C 1998 Solid State Commun. 105 399

    [2]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma, Segawa Y 1998 Appl. Phys. Lett. 72 3270

    [3]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nature Mater. 4 42

    [4]

    Yao G R, Fan G H, Zheng S W, Ma J H, Chen J, Zhang Y, Li S T, Su S C, Zhang T 2012 Acta Phys. Sin. 61 176105 (in Chinese) [姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛 2012 物理学报 61 17605]

    [5]

    Lu J G, Zhang Y Z, Ye Z Z, Zhu L P, Wang L, Zhao B H 2006 Appl. Phys. Lett. 88 222114

    [6]

    Zhang Y Z, Lu J G, Ye Z Z, He H P, Chen L L, Zhao B H 2009 Chin. Phys. Lett. 26 046103

    [7]

    Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan C X, Zhao D X, Shen D Z 2010 Appl. Phys. Lett. 97 222101

    [8]

    Gai Y Q, Tang G, Li J B 2011 J. Phys. Chem. Solids 72 725

    [9]

    Tang X, Cheng X F, Wagner D, Lu H F, Zhang Q Y 2011 J. Appl. Phys. 110 013711

    [10]

    Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106

    [11]

    Kobayashi A, Sankey O F, Dow J D 1983 Phys. Rev. B 28 946

    [12]

    Park C H, Zhang S B, Wei S 2002 Phys. Rev. B 66 073202

    [13]

    Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [14]

    Li Y L, Zhao X, Fan W L 2011 J. Phys. Chem. C 115 3552

    [15]

    Wang B, Zhao Y, Min J H, Sang W B 2009 Appl. Phys. A 94 715

    [16]

    Duan L, Zhang W X, Yu X C, Jiang Z Q, Luan L J, Chen Y N, Li D L 2012 Appl. Surf. Sci. 258 10064

    [17]

    Duan L, Zhang W X, Yu X C, Wang P, Jiang Z Q, Luan L J, Chen Y N, Li D L 2013 Solid State Commun. 157 45

    [18]

    Yan Z, Ma Y P, Deng P R, Yu Z S, Liu C, Song Z T 2010 Appl. Surf. Sci. 256 2289

    [19]

    Li W J, Kong C Y, Qin G P, Ruan H B, Yang T Y, Meng X D, Zhao Y H, Liang W W, Fang L 2012 Sci. Sin. -Phys. Mech. Astrom. 42 819 (in Chinese) [李万俊, 孔春阳, 秦国平, 阮海波, 杨天勇, 孟祥丹, 赵永红, 梁薇薇, 方亮 2012 中国科学 物理学 力学 天文学 42 819]

    [20]

    van de Walle C G 2000 Phys. Pev. Lett. 85 1012

    [21]

    Wu Y Y, Zou C W, Xu P S 2006 Acta Phys. Sin. 55 5466 (in Chinese) [武煜宇, 邹崇文, 徐彭寿 2006 物理学报 55 5466]

    [22]

    Yang Y T, Wu J, Cai Y R, Ding R X, Song J X, Shi L C 2008 Acta Phys. Sin. 57 7151 (in Chinese) [杨银堂, 武军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春 2008 物理学报 57 7151]

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [25]

    Liu B, Gu M, Liu X L, Huang S M, Ni C 2010 Appl. Phys. Lett. 97 122101

    [26]

    Lide D R 2007-2008 CRC Handbook of Chemistry and Physics (88th Ed.) (Boca Raton: CRC Press)

    [27]

    Huang D, Zhao Y J, Chen D H, Shao Y Z 2008 Appl. Phys. Lett. 92 182509

    [28]

    Volnianska O, Boguslawski P, Kaczkowski J, Jakubas P, Jezierski A, Kaminska E 2009 Phys. Rev. B 80 245212

    [29]

    van Schilfgaarde M, Mryasov O N 2001 Phys. Rev. B 63 233205

    [30]

    Furthmller J, Hachenberg F, Schleife A, Rogers D, Hosseini Teherani F, Bechstedt F 2012 Appl. Phys. Lett. 100 022107

    [31]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [32]

    Li W J, Kong C Y, Ruan H B, Qin G P, Huang G J, Yang T Y, Liang W W, Zhao Y H, Meng X D, Yu P, Cui Y T, Fang L 2012 Solid State Commun. 152 147

    [33]

    Lee E C, Chang K J 2004 Phys. Rev. B 70 115210

    [34]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166

  • [1]

    Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Gantwell G, Harsch W C 1998 Solid State Commun. 105 399

    [2]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma, Segawa Y 1998 Appl. Phys. Lett. 72 3270

    [3]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nature Mater. 4 42

    [4]

    Yao G R, Fan G H, Zheng S W, Ma J H, Chen J, Zhang Y, Li S T, Su S C, Zhang T 2012 Acta Phys. Sin. 61 176105 (in Chinese) [姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛 2012 物理学报 61 17605]

    [5]

    Lu J G, Zhang Y Z, Ye Z Z, Zhu L P, Wang L, Zhao B H 2006 Appl. Phys. Lett. 88 222114

    [6]

    Zhang Y Z, Lu J G, Ye Z Z, He H P, Chen L L, Zhao B H 2009 Chin. Phys. Lett. 26 046103

    [7]

    Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan C X, Zhao D X, Shen D Z 2010 Appl. Phys. Lett. 97 222101

    [8]

    Gai Y Q, Tang G, Li J B 2011 J. Phys. Chem. Solids 72 725

    [9]

    Tang X, Cheng X F, Wagner D, Lu H F, Zhang Q Y 2011 J. Appl. Phys. 110 013711

    [10]

    Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106

    [11]

    Kobayashi A, Sankey O F, Dow J D 1983 Phys. Rev. B 28 946

    [12]

    Park C H, Zhang S B, Wei S 2002 Phys. Rev. B 66 073202

    [13]

    Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [14]

    Li Y L, Zhao X, Fan W L 2011 J. Phys. Chem. C 115 3552

    [15]

    Wang B, Zhao Y, Min J H, Sang W B 2009 Appl. Phys. A 94 715

    [16]

    Duan L, Zhang W X, Yu X C, Jiang Z Q, Luan L J, Chen Y N, Li D L 2012 Appl. Surf. Sci. 258 10064

    [17]

    Duan L, Zhang W X, Yu X C, Wang P, Jiang Z Q, Luan L J, Chen Y N, Li D L 2013 Solid State Commun. 157 45

    [18]

    Yan Z, Ma Y P, Deng P R, Yu Z S, Liu C, Song Z T 2010 Appl. Surf. Sci. 256 2289

    [19]

    Li W J, Kong C Y, Qin G P, Ruan H B, Yang T Y, Meng X D, Zhao Y H, Liang W W, Fang L 2012 Sci. Sin. -Phys. Mech. Astrom. 42 819 (in Chinese) [李万俊, 孔春阳, 秦国平, 阮海波, 杨天勇, 孟祥丹, 赵永红, 梁薇薇, 方亮 2012 中国科学 物理学 力学 天文学 42 819]

    [20]

    van de Walle C G 2000 Phys. Pev. Lett. 85 1012

    [21]

    Wu Y Y, Zou C W, Xu P S 2006 Acta Phys. Sin. 55 5466 (in Chinese) [武煜宇, 邹崇文, 徐彭寿 2006 物理学报 55 5466]

    [22]

    Yang Y T, Wu J, Cai Y R, Ding R X, Song J X, Shi L C 2008 Acta Phys. Sin. 57 7151 (in Chinese) [杨银堂, 武军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春 2008 物理学报 57 7151]

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [25]

    Liu B, Gu M, Liu X L, Huang S M, Ni C 2010 Appl. Phys. Lett. 97 122101

    [26]

    Lide D R 2007-2008 CRC Handbook of Chemistry and Physics (88th Ed.) (Boca Raton: CRC Press)

    [27]

    Huang D, Zhao Y J, Chen D H, Shao Y Z 2008 Appl. Phys. Lett. 92 182509

    [28]

    Volnianska O, Boguslawski P, Kaczkowski J, Jakubas P, Jezierski A, Kaminska E 2009 Phys. Rev. B 80 245212

    [29]

    van Schilfgaarde M, Mryasov O N 2001 Phys. Rev. B 63 233205

    [30]

    Furthmller J, Hachenberg F, Schleife A, Rogers D, Hosseini Teherani F, Bechstedt F 2012 Appl. Phys. Lett. 100 022107

    [31]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [32]

    Li W J, Kong C Y, Ruan H B, Qin G P, Huang G J, Yang T Y, Liang W W, Zhao Y H, Meng X D, Yu P, Cui Y T, Fang L 2012 Solid State Commun. 152 147

    [33]

    Lee E C, Chang K J 2004 Phys. Rev. B 70 115210

    [34]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166

  • [1] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [2] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [3] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [4] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [5] 邓胜华, 姜志林. F, Na共掺杂p型ZnO的第一性原理研究. 物理学报, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [6] 郑树文, 范广涵, 张涛, 苏晨, 宋晶晶, 丁彬彬. 纤锌矿BexZn1-xO合金能隙弯曲系数的第一原理研究. 物理学报, 2013, 62(3): 037102. doi: 10.7498/aps.62.037102
    [7] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [8] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [9] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [10] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算. 物理学报, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [11] 胡小颖, 田宏伟, 宋立军, 朱品文, 乔靓. Li-N, Li-2N共掺p型ZnO的第一性原理研究. 物理学报, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [12] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [13] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [14] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [15] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [16] 唐立丹, 张 跃. NH3气氛处理制备p型ZnO薄膜及性能表征. 物理学报, 2008, 57(2): 1145-1149. doi: 10.7498/aps.57.1145
    [17] 赵慧芳, 曹全喜, 李建涛. N,Ga共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2008, 57(9): 5828-5832. doi: 10.7498/aps.57.5828
    [18] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [19] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [20] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
计量
  • 文章访问数:  6451
  • PDF下载量:  17418
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-07
  • 修回日期:  2013-04-28
  • 刊出日期:  2013-08-05

/

返回文章
返回