搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Te-N共掺p型ZnO

姚光锐 范广涵 郑树文 马佳洪 陈峻 章勇 李述体 宿世臣 张涛

引用本文:
Citation:

第一性原理研究Te-N共掺p型ZnO

姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛

First-principles study of p-type ZnO by Te-N codoping

Yao Guang-Rui, Fan Guang-Han, Zheng Shu-Wen, Ma Jia-Hong, Chen Jun, Zhang Yong, Li Shu-Ti, Su Shi-Chen, Zhang Tao
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理赝势法对Te-N共掺杂ZnO体系的晶格结构、 杂质态密度和电子结构进行了理论分析.研究表明, N掺杂引起晶格收缩,而Te的掺入引起晶格膨胀, 从而减小晶格应力促进N的掺杂,并且Te由于电负性小于O而带正电, Te在ZnO中作为等电子施主而存在.研究发现, N掺杂体系中在费米能级附件形成窄的深受主能级, 而Te-N共掺体系中, N杂质带变宽,空穴更加离域,同时,空穴有效质量变小,受主能级变浅, 更有利于实现p型特性.因此, Te-N共掺有望成为一种更为有效的p型掺杂手段.
    The crystal structure, density of states and electronic structures of Te-N doped ZnO are investigated from the first-principles pseudo-potential approach based on density functional theory. It is found that the incorporation of N into ZnO induces contraction of lattice, while Te incorporation will cause expansion of lattice. Thus, the co-doping of both Te and N is conducible to the incorporation of N with minimum lattice strain. Besides, Te atoms is positively charged because the electronegativity of Te is smaller than that of O. Consequently, Te atom is expected to act as an isoelectronic donor in ZnO. Moreover, the acceptor level of N doped ZnO is narrow and deep. While in the Te-N doped ZnO system, N-impurity bandwidth at the top of valence band becomes larger, while tends to delocalize the hole. Meantime, the system obtains shallower acceptor levels and lighter mass of acceptors. The results suggest that the codoping of Te-N is an effective p-type doping method in ZnO.
    • 基金项目: 国家自然科学基金(批准号: 61176043); 广东省战略性新兴产业LED产业项目(批准号: 2010A081002005, 2011A081301003) 和广东省教育部产学研项目(批准号: 2010B090400192)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Fund for Strategic and Emerging Industries of Guangdong Province (Grant Nos. 2010A081002005, 2011A081301003), and the Cooperation Project in Industry, University and Institution of Guangdong Province and Ministry of Education (Grant No. 2010B090400192).
    [1]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    [2]

    Kang S H, Hwang D K, Park S J 2005 Appl. Phys. Lett. 86 211902

    [3]

    Chang Y L, Zhang Q F, Sun H W, J ing L 2007 Acta Phys. Sin. 56 2399 (in Chinese) [常艳玲, 张琦锋, 孙晖吴, 锦雷 2007 物理学报 56 2399]

    [4]

    Qiao Q, Li B H, Shan C X, Liu J S, Yu J, Xie X H, Zhang Z Z, Ji T B, Jia Y, Shen D Z 2012 Mater. Lett. 74 104

    [5]

    Wang Z L 2003 Adv. Mater. 15 432

    [6]

    Bar M, Reichardt J, Grimm A 2005 J. Appl. Phys. 98 5370221

    [7]

    Yan Y F, Al-jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [8]

    Yan Y F, Wei S H 2008 Phys. Stat. Sol. (b) 245 641

    [9]

    Bian J M, Li X M, Zhang C Y 2004 Appl. Phys. Lett. 85 4070

    [10]

    Nakano Y, Morikawa T, Ohwaki T, Taga Y 2006 Appl. Phys. Lett. 88 172103

    [11]

    Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201

    [12]

    Park C H, Zhang S B, Wei S H 2002 Phys. Rev. B 66 073202

    [13]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166

    [14]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [15]

    Xing H Y, Fan G H, Zhang Y, Zhao D G 2009 Acta Phys. Sin. 58 450 (in Chinese) [刑海英, 范广涵, 章勇, 赵德刚 2009 物理学报 58 450]

    [16]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 ( in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 物理学报 57 5828]

    [17]

    Hu Z G, Duan M Y, Xu M, Zhou X, Chen Q Y, Dong C J, Linghu R F 2009 Acta Phys. Sin. 58 1166 (in Chinese) [胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋 2009 物理学报 58 1166]

    [18]

    Park S H, Minegishi T, Lee H J, Park J S, Im I H 2010 J. Appl. Phys. 108 093518

    [19]

    Park S H, Minegishi T, Oh D C, Lee H J, Taishi T, Park J S, Jung M, Chang J H, Im I H, Ha J, Hong S, Yonenaga I, Chikyow T, Yao T 2010 Appl. Phys. Express 3 031103

    [20]

    Tang K, Gu S L, Wu K P, Zhu S M, Ye J D, Zhang R, Zheng Y D 2010 Appl. Phys. Lett. 96 242101

    [21]

    Segall M D, Lindan P J D, Probert MJ 2002 J Phys. Cond. Matt. 14 2717

    [22]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Monkhorst H J, Parkk J D 1976 Phys. Rev. B 13 5188

    [26]

    Decremp S F, Datchi F, Saitta A M, Polian A, Pascarelli S, DiCicco A, Itie J P, Baudelet F 2003 Phys. Rev. B 68 104101

    [27]

    Jaffe J E, Snydern J A, Lin Z, HessA C 2000 Phys. Rev. B 62 1660

    [28]

    Zuo C Y, Wen J, Zhu S L, Zhong C 2010 Opt. Mater. 32 595

    [29]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [30]

    Osuch D, Lombardi E B, Gebicki W 2006 Phys. Rev. B 73 075202

    [31]

    Godby R W, Schluter M, Sham L J 1988 Phys. Rev. B 37 10159

    [32]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3318 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 物理学报 57 3318]

    [33]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 Appl. Phys. Lett. 87 252106

    [34]

    Wu H L, Zheng R S, Liu W, Meng S, Huang J Y 2010 J. Appl. Lett 108 053715

    [35]

    Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys.: Condens. Matter 13 8901

    [36]

    Yamamoto T 2003 Jpn. J. Appl. Phys. 42 L514

    [37]

    Li J B, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201

    [38]

    Yan Y F, Li J B, Wei S H, Al-Jassim M M 2007 Phys. Rev. Lett. 98 135506

    [39]

    Vigué F, Vennegues P, Vezian S, Laugt M, Faurie J P 2001 Appl. Phys. Lett. 79 194

  • [1]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    [2]

    Kang S H, Hwang D K, Park S J 2005 Appl. Phys. Lett. 86 211902

    [3]

    Chang Y L, Zhang Q F, Sun H W, J ing L 2007 Acta Phys. Sin. 56 2399 (in Chinese) [常艳玲, 张琦锋, 孙晖吴, 锦雷 2007 物理学报 56 2399]

    [4]

    Qiao Q, Li B H, Shan C X, Liu J S, Yu J, Xie X H, Zhang Z Z, Ji T B, Jia Y, Shen D Z 2012 Mater. Lett. 74 104

    [5]

    Wang Z L 2003 Adv. Mater. 15 432

    [6]

    Bar M, Reichardt J, Grimm A 2005 J. Appl. Phys. 98 5370221

    [7]

    Yan Y F, Al-jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [8]

    Yan Y F, Wei S H 2008 Phys. Stat. Sol. (b) 245 641

    [9]

    Bian J M, Li X M, Zhang C Y 2004 Appl. Phys. Lett. 85 4070

    [10]

    Nakano Y, Morikawa T, Ohwaki T, Taga Y 2006 Appl. Phys. Lett. 88 172103

    [11]

    Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201

    [12]

    Park C H, Zhang S B, Wei S H 2002 Phys. Rev. B 66 073202

    [13]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. 38 L166

    [14]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [15]

    Xing H Y, Fan G H, Zhang Y, Zhao D G 2009 Acta Phys. Sin. 58 450 (in Chinese) [刑海英, 范广涵, 章勇, 赵德刚 2009 物理学报 58 450]

    [16]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828 ( in Chinese) [赵慧芳, 曹全喜, 李建涛 2008 物理学报 57 5828]

    [17]

    Hu Z G, Duan M Y, Xu M, Zhou X, Chen Q Y, Dong C J, Linghu R F 2009 Acta Phys. Sin. 58 1166 (in Chinese) [胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋 2009 物理学报 58 1166]

    [18]

    Park S H, Minegishi T, Lee H J, Park J S, Im I H 2010 J. Appl. Phys. 108 093518

    [19]

    Park S H, Minegishi T, Oh D C, Lee H J, Taishi T, Park J S, Jung M, Chang J H, Im I H, Ha J, Hong S, Yonenaga I, Chikyow T, Yao T 2010 Appl. Phys. Express 3 031103

    [20]

    Tang K, Gu S L, Wu K P, Zhu S M, Ye J D, Zhang R, Zheng Y D 2010 Appl. Phys. Lett. 96 242101

    [21]

    Segall M D, Lindan P J D, Probert MJ 2002 J Phys. Cond. Matt. 14 2717

    [22]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]

    Monkhorst H J, Parkk J D 1976 Phys. Rev. B 13 5188

    [26]

    Decremp S F, Datchi F, Saitta A M, Polian A, Pascarelli S, DiCicco A, Itie J P, Baudelet F 2003 Phys. Rev. B 68 104101

    [27]

    Jaffe J E, Snydern J A, Lin Z, HessA C 2000 Phys. Rev. B 62 1660

    [28]

    Zuo C Y, Wen J, Zhu S L, Zhong C 2010 Opt. Mater. 32 595

    [29]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [30]

    Osuch D, Lombardi E B, Gebicki W 2006 Phys. Rev. B 73 075202

    [31]

    Godby R W, Schluter M, Sham L J 1988 Phys. Rev. B 37 10159

    [32]

    Chen K, Fan G H, Zhang Y, Ding S F 2008 Acta Phys. Sin. 57 3318 (in Chinese) [陈琨, 范广涵, 章勇, 丁少锋 2008 物理学报 57 3318]

    [33]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 Appl. Phys. Lett. 87 252106

    [34]

    Wu H L, Zheng R S, Liu W, Meng S, Huang J Y 2010 J. Appl. Lett 108 053715

    [35]

    Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys.: Condens. Matter 13 8901

    [36]

    Yamamoto T 2003 Jpn. J. Appl. Phys. 42 L514

    [37]

    Li J B, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201

    [38]

    Yan Y F, Li J B, Wei S H, Al-Jassim M M 2007 Phys. Rev. Lett. 98 135506

    [39]

    Vigué F, Vennegues P, Vezian S, Laugt M, Faurie J P 2001 Appl. Phys. Lett. 79 194

  • [1] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [7] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [8] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [9] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [10] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] 邓贝, 孙慧卿, 郭志友, 高小奇. B-N共掺杂改善p型ZnO的理论分析. 物理学报, 2010, 59(2): 1212-1218. doi: 10.7498/aps.59.1212
    [12] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质. 物理学报, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [13] 党随虎, 李春霞, 韩培德. Mg,Cu 掺杂CdS电子结构的第一性原理研究. 物理学报, 2009, 58(6): 4137-4143. doi: 10.7498/aps.58.4137
    [14] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [15] 赵慧芳, 曹全喜, 李建涛. N,Ga共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2008, 57(9): 5828-5832. doi: 10.7498/aps.57.5828
    [16] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [17] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [18] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  7054
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-26
  • 修回日期:  2012-02-23
  • 刊出日期:  2012-09-05

/

返回文章
返回