搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究

汪冬冬 高辉

引用本文:
Citation:

三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究

汪冬冬, 高辉

Synthesis and magnetic properties of three-dimensional self-assembly Eu3+-graphene composite material

Wang Dong-Dong, Gao Hui
PDF
导出引用
  • 采用一锅水热法在180 ℃ 下制备三维Eu3+-石墨烯自组装复合材料. 通过X射线衍射、 扫描电子显微镜、透射电子显微镜表征了合成样品的物相及形貌特征. 结果表明: 合成的样品具有多孔性结构, 层与层之间堆叠成三维结构, 并且结果显示产物中没有Eu3+的团聚体. 经过拉曼光谱, 傅里叶红外光谱分析表明, Eu3+通过含氧官能团与石墨烯复合. 通过振动样品磁强计测定样品的磁滞回线, 对其磁学性能进行研究, 剥离顺磁信号后, 测得相应的矫顽力Hc ≈ 39.61 Oe(1 Oe=79.5775 A/m), 饱和磁化强度Ms ≈ 0.08 emu/g, 发现该产物具有弱的铁磁性, 与石墨烯相比, Eu3+的加入使得产物的铁磁性有较大提高.
    The three-dimensional self-assembly Eu3+-graphene composite materials are synthesized through a one-pot hydrothermal reaction under 180 ℃. The obtained samples are analyzed through powder X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The results show that each sample has porous structure and no independent Eu3+ agglomerates. Raman spectrum and Fourier transform infrared spectrum analyses indicate Eu3+ is well complexed with graphene through oxygen-containing groups. The magnetic properties are measured using vibrating sample magnetometer. The magnetic hysteresis loop shows the corresponding coercivity Hc ≈ 39.61 Oe (1 Oe=79.5775 A/m) and the magnetization saturation Ms ≈ 0.08 emu/g that indicates that the sample presents weak ferromagnetism and good soft magnetic properties compared with graphene.
    • 基金项目: 中央高校自由探索项目(批准号:lzujbky-2013-186);兰州大学中央高校基本业务费和兰州大学磁学与磁性材料教育部重点实验室开放课题(批准号:LZUMMM2013006)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2013-186), the Basic Scientific Research Business Expenses of the Central University and Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, China (Grant No. LZUMMM2013006).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Duobonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐鹏寿, 韦世强 2012 物理学报 61 037302]

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Li C, Shi G Q 2012 Nanoscale 4 5549

    [5]

    Xu Y X, Shi G Q 2011 J. Mater. Chem. 21 3311

    [6]

    Nardecchia S, Carriazo D, Ferrer M L, del Monte F 2013 Chem. Soc. Rev. 42 802

    [7]

    Tang C, Ji L, Meng L J, Sun L Z, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 7815 (in Chinese) [唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新 2009 物理学报 58 7815]

    [8]

    Kang C Y, Tang J, Li L M, Pan H B, Yan W S, Xu P S, Wei S Q, Chen X F, Xu X Z 2011 Acta Phys. Sin. 60 047302 (in Chinese) [康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐仙则 2011 物理学报 60 047302]

    [9]

    Di C A, Wei D C, Yu G, Liu Y Q, Guo Y L, Zhu D B 2008 Adv. Mater. 20 3289

    [10]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [11]

    Xu Y X, Sheng K X, Li C, Shi G Q 2010 ACS Nano 4 4324

    [12]

    Jiang X, Ma Y W, Li J J, Fan Q L, Huang W 2010 J. Phys. Chem. C 114 22462

    [13]

    Zhou D, Cui Y, Han B H 2010 Angrew. Chem. 49 4603

    [14]

    Zhou Y, Bao Q, Tang L L, Zhong Y, Loh K P 2009 Chem. Mater. 21 2950

    [15]

    L W, Tao Y, Ni W, Zhou Z, Su F Y, Chen X C, Jin F M, Yang Q H 2011 J. Mater. Chem. 21 12352

    [16]

    Huang Y G, Jiang F L, Hong M C 2009 Chem. Rev. 253 2814

    [17]

    Guo Y N, Xu G F, Guo Y, Tang J 2011 Dalton Trans. 40 9953

    [18]

    Chandrasekhar V, Murugesapandian B 2009 Acc. Chem. Res. 42 1047

    [19]

    Sorace L, Benelli C, Gatteschi D 2011 Chem. Soc. Rev. 40 3092

    [20]

    Cui Y, Yue Y, Qian G, Chen B 2012 Chem. Rev. 112 1126

    [21]

    Yoon M, Srirambalaji R, Kim K 2012 Chem. Rev. 112 1196

    [22]

    Suh M P, Park H J, Prasad T K, Lim D W 2012 Chem. Rev. 112 782

    [23]

    Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R 2012 Chem. Rev. 112 724

    [24]

    Getman R B, Bae Y S, Wilmer C E, Snurr R H 2012 Chem. Rev. 112 703

    [25]

    Gupta B K, Thanikaivelan P, Narayanan T N 2011 Nano Lett. 11 5227

    [26]

    Mo Z L 2012 Mater. Manufact. Proc. 27 494

    [27]

    Bhowmick S, Shenoy V B 2008 Chem. Phys. 128 244717

    [28]

    Feng M, Zhan H B, Chen Y 2010 Appl. Phys. Lett. 96 033107

    [29]

    Chen D M 2010 Acta Phys. Sin. 59 6399 (in Chinese) [陈东猛 2010 物理学报 59 6399]

    [30]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [31]

    Yang H P, Zhang D S, Shi L Y, Fang J H 2008 Acta Mater. 56 955

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Duobonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐鹏寿, 韦世强 2012 物理学报 61 037302]

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Li C, Shi G Q 2012 Nanoscale 4 5549

    [5]

    Xu Y X, Shi G Q 2011 J. Mater. Chem. 21 3311

    [6]

    Nardecchia S, Carriazo D, Ferrer M L, del Monte F 2013 Chem. Soc. Rev. 42 802

    [7]

    Tang C, Ji L, Meng L J, Sun L Z, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 7815 (in Chinese) [唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新 2009 物理学报 58 7815]

    [8]

    Kang C Y, Tang J, Li L M, Pan H B, Yan W S, Xu P S, Wei S Q, Chen X F, Xu X Z 2011 Acta Phys. Sin. 60 047302 (in Chinese) [康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐仙则 2011 物理学报 60 047302]

    [9]

    Di C A, Wei D C, Yu G, Liu Y Q, Guo Y L, Zhu D B 2008 Adv. Mater. 20 3289

    [10]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [11]

    Xu Y X, Sheng K X, Li C, Shi G Q 2010 ACS Nano 4 4324

    [12]

    Jiang X, Ma Y W, Li J J, Fan Q L, Huang W 2010 J. Phys. Chem. C 114 22462

    [13]

    Zhou D, Cui Y, Han B H 2010 Angrew. Chem. 49 4603

    [14]

    Zhou Y, Bao Q, Tang L L, Zhong Y, Loh K P 2009 Chem. Mater. 21 2950

    [15]

    L W, Tao Y, Ni W, Zhou Z, Su F Y, Chen X C, Jin F M, Yang Q H 2011 J. Mater. Chem. 21 12352

    [16]

    Huang Y G, Jiang F L, Hong M C 2009 Chem. Rev. 253 2814

    [17]

    Guo Y N, Xu G F, Guo Y, Tang J 2011 Dalton Trans. 40 9953

    [18]

    Chandrasekhar V, Murugesapandian B 2009 Acc. Chem. Res. 42 1047

    [19]

    Sorace L, Benelli C, Gatteschi D 2011 Chem. Soc. Rev. 40 3092

    [20]

    Cui Y, Yue Y, Qian G, Chen B 2012 Chem. Rev. 112 1126

    [21]

    Yoon M, Srirambalaji R, Kim K 2012 Chem. Rev. 112 1196

    [22]

    Suh M P, Park H J, Prasad T K, Lim D W 2012 Chem. Rev. 112 782

    [23]

    Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R 2012 Chem. Rev. 112 724

    [24]

    Getman R B, Bae Y S, Wilmer C E, Snurr R H 2012 Chem. Rev. 112 703

    [25]

    Gupta B K, Thanikaivelan P, Narayanan T N 2011 Nano Lett. 11 5227

    [26]

    Mo Z L 2012 Mater. Manufact. Proc. 27 494

    [27]

    Bhowmick S, Shenoy V B 2008 Chem. Phys. 128 244717

    [28]

    Feng M, Zhan H B, Chen Y 2010 Appl. Phys. Lett. 96 033107

    [29]

    Chen D M 2010 Acta Phys. Sin. 59 6399 (in Chinese) [陈东猛 2010 物理学报 59 6399]

    [30]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [31]

    Yang H P, Zhang D S, Shi L Y, Fang J H 2008 Acta Mater. 56 955

  • [1] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [2] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性. 物理学报, 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [3] 杨芝, 张悦, 周倩倩, 王玉华. Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究. 物理学报, 2017, 66(13): 137501. doi: 10.7498/aps.66.137501
    [4] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [5] 赵聪, 孟庆裕, 孙文军. Eu3+掺杂CaMoO4微米荧光粉发光性质的研究. 物理学报, 2015, 64(10): 107803. doi: 10.7498/aps.64.107803
    [6] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究. 物理学报, 2014, 63(23): 237501. doi: 10.7498/aps.63.237501
    [7] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [8] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [9] 孟庆裕, 刘志鑫, 孙文军. Gd2(WO4)3: Eu纳米发光材料中黄昆因子和能量传递速率的实验获得. 物理学报, 2013, 62(9): 097801. doi: 10.7498/aps.62.097801
    [10] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究. 物理学报, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [11] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [12] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [13] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性. 物理学报, 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [14] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究. 物理学报, 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [15] 冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男. Eu3+掺杂Gd2W2O9和Gd2(WO4)3纳米荧光粉发光性质研究. 物理学报, 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [16] 徐伟, 李成仁, 陈宝玖, 冯志庆. Eu3+作探针研究铋铕共掺硼硅酸盐玻璃光学特性. 物理学报, 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [17] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [20] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
计量
  • 文章访问数:  2914
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-25
  • 修回日期:  2013-05-18
  • 刊出日期:  2013-09-05

三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究

  • 1. 兰州大学物理科学与技术学院, 兰州 730000
    基金项目: 中央高校自由探索项目(批准号:lzujbky-2013-186);兰州大学中央高校基本业务费和兰州大学磁学与磁性材料教育部重点实验室开放课题(批准号:LZUMMM2013006)资助的课题.

摘要: 采用一锅水热法在180 ℃ 下制备三维Eu3+-石墨烯自组装复合材料. 通过X射线衍射、 扫描电子显微镜、透射电子显微镜表征了合成样品的物相及形貌特征. 结果表明: 合成的样品具有多孔性结构, 层与层之间堆叠成三维结构, 并且结果显示产物中没有Eu3+的团聚体. 经过拉曼光谱, 傅里叶红外光谱分析表明, Eu3+通过含氧官能团与石墨烯复合. 通过振动样品磁强计测定样品的磁滞回线, 对其磁学性能进行研究, 剥离顺磁信号后, 测得相应的矫顽力Hc ≈ 39.61 Oe(1 Oe=79.5775 A/m), 饱和磁化强度Ms ≈ 0.08 emu/g, 发现该产物具有弱的铁磁性, 与石墨烯相比, Eu3+的加入使得产物的铁磁性有较大提高.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回