搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场对Mn-Sb包晶合金相变及凝固组织的影响

苑轶 李英龙 王强 刘铁 高鹏飞 赫冀成

引用本文:
Citation:

强磁场对Mn-Sb包晶合金相变及凝固组织的影响

苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成

Influence of high magnetic fields on phase transition and solidification microstructure in Mn-Sb peritectic alloy

Yuan Yi, Li Ying-Long, Wang Qiang, Liu Tie, Gao Peng-Fei, He Ji-Cheng
PDF
导出引用
  • 以Mn-56.5 wt%Sb包晶合金为研究对象, 进行了不同磁场、不同冷速条件下的凝固实验. 通过对液相线温度、包晶温度的考察, 发现强磁场可以提高Mn-56.5 wt%Sb合金的液相线温度, 且该上升值随磁感应强度的增加而增加, 当所施加的磁感应强度为11.5 T时, 液相线温度升高大约3 ℃, 但施加磁场后包晶反应温度没有明显改变. 对该合金的凝固组织进行定量金相分析发现, 施加磁场后MnSb相明显减少, 该结果与磁场对相变温度的影响相一致. 另外通过X射线衍射分析发现, 强磁场诱发包晶反应生成相MnSb的c轴垂直于磁场方向取向, 而Mn2Sb相的(311)面平行于磁场方向取向. 对不同冷速凝固的Mn-56.5 wt%Sb合金组织进行定量金相分析结果显示, 强磁场对合金凝固过程的作用效果受到冷却速度的影响. 随着冷却速度的增加, 强磁场对该合金凝固组织中MnSb相的相对含量变化影响效果减弱.
    In recent years, the application of high magnetic field in material processing has received much attention from many researchers. However, most studies focus on single-phase solidification or eutectic solidification. The effect of high magnetic field on peritectic alloy is rarely reported. In this study, the solidification experiments on a Mn-56.5 wt%Sb peritectic alloy are carried out under high magnetic fields up to 11.5 T. According to the temperature curve recorded during solidification, it is revealed that high magnetic field increases the liquidus temperature and this rise increases with magnetic flux density increasing. The liquidus temperature rises by about 3 ℃ when the magnetic flux density is 11.5 T. On the contrary, no obvious change in peritectic temperature is found. In addition, the solidified microstructure is analyzed by quantitative metallographic analysis and the result shows that the amount of MnSb phase decreases markedly by the application of high magnetic field. This result consists with the change of phase transition temperature. By the X-ray diffraction, it is found that the c axis of MnSb crystal and (311) plane of Mn2Sb are perpendicular and parallel to the direction of high magnetic field,respectively. Furthermore, the solidification experiments with different cooling rates are also carried out. The quantitative metallographic analysis reveals that the effect of high magnetic field on solidified microstructure is affected by cooling rate. With the increase in cooling rate, the effect of high magnetic field on the fraction of MnSb phase fraction is weakened.
    • 基金项目: 国家自然科学基金(批准号: 51174056, 51006020, 51271056)、国家重点基础研究发展计划(批准号: 2011CB612206, 2011CB610405)和中央高校基本科研业务费(批准号: N120509001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51174056, 51006020, 51271056), the National Basic Research Program of China (Grant Nos. 2011CB612206, 2011CB610405), and the Fundamental Research Fund for the Central Universities, China (Grant No. N120509001).
    [1]

    Hu B, Yan L A, Shao M 2009 Adv. Mater. 21 1500

    [2]

    Luo X H, Chen L 2008 Sci. China E: Technol. Sci. 51 1370

    [3]

    Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W, Wan X 2013 Chin. Phys. B 22 066202

    [4]

    Ma Y W, Xiao L Y, Yan L G 2006 Chin. Sci. Bull. 51 2944

    [5]

    Tokunaga M 2012 Front. Phys. China 7 386

    [6]

    Wang C J, Yuan Y, Wang Q, Liu T, Lou C S, He J C 2010 Acta Phys. Sin. 59 3116 (in Chinese) [王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成 2010 物理学报 59 3116]

    [7]

    Liu Z L, Hu H Y, Fan T Y, Xing X S 2009 Chin. Phys. B 18 1283

    [8]

    Oreper G M, Szekely J 1984 J. Cryst. Growth 67 405

    [9]

    Sampath R, Zabaras N 2001 J. Comput. Phys. 168 384

    [10]

    Samanta D, Zabaras N 2006 Int. J. Heat Mass Tran. 49 4850

    [11]

    Chedzey H A, Hurle D T J 1966 Nature 210 933

    [12]

    Luo D W, Guo J, Yan Z M, Li T J 2009 Rare Metal Mat. Eng. 38 553 (in Chinese) [罗大伟, 郭进, 阎志明, 李廷举 2009 稀有金属材料与工程 38 553]

    [13]

    Kang J Y, Tozawa S 1996 Acta Phys. Sin. 45 324 (in Chinese) [康俊勇, 户泽慎一郎 1996 物理学报 45 324]

    [14]

    Yuan Y, Sassa K, Iwai K, Wang Q, He J C, Asai S 2009 ISIJ Int. 48 901

    [15]

    Koyama T 2008 Sci. Technol. Adv. Mater. 9 013006

    [16]

    Mikelson A E, Karklin Y K 1981 J. Cryst. Growth 52 524

    [17]

    Li X, Ren X M, Yves F 2007 Intermetallics 15 845

    [18]

    Wang Q, Liu T, Wang C J, Wang K, Li G J, He J C 2010 Mater. Sci. Forum. 638-642 2805

    [19]

    Sadovskiy V D, Rodigin N M, Smirnov L V, Filonchik G M, Fakidov I G 1961 Fiz. Met. Metalloved. 12 131

    [20]

    Choi J K, Ohtsuka H, Xu Y, Choo W Y 2000 Scripta Mater. 43 221

    [21]

    Ludtka G M, Jaramillo R A, Kisner R A, Nicholson D M, Wilgen J B, Mackiewicz-Ludtka G, Kalu P N 2004 Scripta Mater. 51 171

    [22]

    Zhang Y D, He C S, Zhao X, Zuo L, Esling C, He J C 2005 J. Magn. Magn. Mater. 294 267

    [23]

    Pang X J, Wang Q, Wang C J, Wang Y Q, Li Y B, He J C 2006 Acta Phys. Sin. 55 5129 (in Chinese) [庞雪君, 王强, 王春江, 王亚勤, 李亚彬, 赫冀成 2006 物理学报 55 5129]

    [24]

    Wang Q, Liu T, Zhang C, Gao A, Li D G, He J C 2009 Sci. Technol. Adv. Mater. 10 014606

  • [1]

    Hu B, Yan L A, Shao M 2009 Adv. Mater. 21 1500

    [2]

    Luo X H, Chen L 2008 Sci. China E: Technol. Sci. 51 1370

    [3]

    Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W, Wan X 2013 Chin. Phys. B 22 066202

    [4]

    Ma Y W, Xiao L Y, Yan L G 2006 Chin. Sci. Bull. 51 2944

    [5]

    Tokunaga M 2012 Front. Phys. China 7 386

    [6]

    Wang C J, Yuan Y, Wang Q, Liu T, Lou C S, He J C 2010 Acta Phys. Sin. 59 3116 (in Chinese) [王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成 2010 物理学报 59 3116]

    [7]

    Liu Z L, Hu H Y, Fan T Y, Xing X S 2009 Chin. Phys. B 18 1283

    [8]

    Oreper G M, Szekely J 1984 J. Cryst. Growth 67 405

    [9]

    Sampath R, Zabaras N 2001 J. Comput. Phys. 168 384

    [10]

    Samanta D, Zabaras N 2006 Int. J. Heat Mass Tran. 49 4850

    [11]

    Chedzey H A, Hurle D T J 1966 Nature 210 933

    [12]

    Luo D W, Guo J, Yan Z M, Li T J 2009 Rare Metal Mat. Eng. 38 553 (in Chinese) [罗大伟, 郭进, 阎志明, 李廷举 2009 稀有金属材料与工程 38 553]

    [13]

    Kang J Y, Tozawa S 1996 Acta Phys. Sin. 45 324 (in Chinese) [康俊勇, 户泽慎一郎 1996 物理学报 45 324]

    [14]

    Yuan Y, Sassa K, Iwai K, Wang Q, He J C, Asai S 2009 ISIJ Int. 48 901

    [15]

    Koyama T 2008 Sci. Technol. Adv. Mater. 9 013006

    [16]

    Mikelson A E, Karklin Y K 1981 J. Cryst. Growth 52 524

    [17]

    Li X, Ren X M, Yves F 2007 Intermetallics 15 845

    [18]

    Wang Q, Liu T, Wang C J, Wang K, Li G J, He J C 2010 Mater. Sci. Forum. 638-642 2805

    [19]

    Sadovskiy V D, Rodigin N M, Smirnov L V, Filonchik G M, Fakidov I G 1961 Fiz. Met. Metalloved. 12 131

    [20]

    Choi J K, Ohtsuka H, Xu Y, Choo W Y 2000 Scripta Mater. 43 221

    [21]

    Ludtka G M, Jaramillo R A, Kisner R A, Nicholson D M, Wilgen J B, Mackiewicz-Ludtka G, Kalu P N 2004 Scripta Mater. 51 171

    [22]

    Zhang Y D, He C S, Zhao X, Zuo L, Esling C, He J C 2005 J. Magn. Magn. Mater. 294 267

    [23]

    Pang X J, Wang Q, Wang C J, Wang Y Q, Li Y B, He J C 2006 Acta Phys. Sin. 55 5129 (in Chinese) [庞雪君, 王强, 王春江, 王亚勤, 李亚彬, 赫冀成 2006 物理学报 55 5129]

    [24]

    Wang Q, Liu T, Zhang C, Gao A, Li D G, He J C 2009 Sci. Technol. Adv. Mater. 10 014606

  • [1] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [2] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [3] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择. 物理学报, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [4] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型 . 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [5] 郑天祥, 钟云波, 孙宗乾, 王江, 吴秋芳, 冯美龙, 任忠鸣. 电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响. 物理学报, 2012, 61(23): 238501. doi: 10.7498/aps.61.238501
    [6] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [7] 李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成. 初始温度和冷却速率对金属团簇凝固行为的影响. 物理学报, 2011, 60(9): 093601. doi: 10.7498/aps.60.093601
    [8] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [9] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [10] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [11] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [12] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [13] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [14] 王江, 钟云波, 任维丽, 雷作胜, 任忠鸣, 徐匡迪. 强磁场复合交变电流作用下Zn-30wt%Bi偏晶合金的凝固. 物理学报, 2009, 58(2): 893-900. doi: 10.7498/aps.58.893
    [15] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [16] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [17] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [18] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长. 物理学报, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [19] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [20] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
计量
  • 文章访问数:  3023
  • PDF下载量:  696
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-12
  • 修回日期:  2013-07-18
  • 刊出日期:  2013-10-05

强磁场对Mn-Sb包晶合金相变及凝固组织的影响

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819
    基金项目: 国家自然科学基金(批准号: 51174056, 51006020, 51271056)、国家重点基础研究发展计划(批准号: 2011CB612206, 2011CB610405)和中央高校基本科研业务费(批准号: N120509001)资助的课题.

摘要: 以Mn-56.5 wt%Sb包晶合金为研究对象, 进行了不同磁场、不同冷速条件下的凝固实验. 通过对液相线温度、包晶温度的考察, 发现强磁场可以提高Mn-56.5 wt%Sb合金的液相线温度, 且该上升值随磁感应强度的增加而增加, 当所施加的磁感应强度为11.5 T时, 液相线温度升高大约3 ℃, 但施加磁场后包晶反应温度没有明显改变. 对该合金的凝固组织进行定量金相分析发现, 施加磁场后MnSb相明显减少, 该结果与磁场对相变温度的影响相一致. 另外通过X射线衍射分析发现, 强磁场诱发包晶反应生成相MnSb的c轴垂直于磁场方向取向, 而Mn2Sb相的(311)面平行于磁场方向取向. 对不同冷速凝固的Mn-56.5 wt%Sb合金组织进行定量金相分析结果显示, 强磁场对合金凝固过程的作用效果受到冷却速度的影响. 随着冷却速度的增加, 强磁场对该合金凝固组织中MnSb相的相对含量变化影响效果减弱.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回