搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaWO4:Sm3+荧光粉的发光性质及其能量传递机理

毕长虹 孟庆裕

引用本文:
Citation:

CaWO4:Sm3+荧光粉的发光性质及其能量传递机理

毕长虹, 孟庆裕

Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors

Bi Chang-Hong, Meng Qing-Yu
PDF
导出引用
  • 采用沉淀法制备了不同Sm3+掺杂浓度的白钨矿结构CaWO4荧光粉材料. 对CaWO4:Sm3+ 材料的光致发光性质的研究结果表明, 在404 nm光照下样品可以实现色纯度较高的红光发射, 而短波紫外240 nm光照下除Sm3+的特征发射外还能观察到CaWO4自激发发射, 能够获得较强的白光; 实验发现Sm3+掺杂浓度为2%时样品的发光强度最高; 通过对实验数据的分析确定了Sm3+之间的能量传递类型为电偶极-电偶极相互作用, 并计算了能量传递的临界距离大约为2.0 nm.
    The scheelite-structured CaWO4 phosphors doped with different concentrations of Sm3+ were prepared by precipitation method. Photoluminescence properties of Sm3+-doped CaWO4 samples were studied. Results indicate that red light emission of Sm3+ with higher color purity in the samples can be excited by 404 nm blue light. There are 4f-4f intrinsic emission of Sm3+ and a strong self-excitation emission of CaWO4 when excited by 240 nm short-wave ultraviolet, and the white light emission can be obtained. Experiments show that the best Sm3+ doping concentration is 2%. The energy transfer type between Sm3+ ions was determined to be the electric dipole-electric dipole interaction and the critical energy transfer distance (Dc) was calculated to be 2.0 nm.
    • 基金项目: 国家自然科学基金(批准号:51002041);黑龙江省普通高等学校青年学术骨干支持计划(批准号:1252G032)和哈尔滨师范大学青年学术骨干资助计划(批准号:11KXQ-06)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51002041), the Foundation for Young Key Scholars of Higher Education Institution of Heilongjiang Province, China (Grant No. 1252G032), and the Foundation for Young Key Scholars of Harbin Normal University (Grant No. 11KXQ-06).
    [1]

    Ryu J H, Bang S Y, Kim W S, Park G S, Kim K M, Yoon J W, Shim K B, Koshizaki N 2007 J. Alloys Compd. 441 146

    [2]

    Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏 2010 物理学报 59 1321]

    [3]

    Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longa E 2007 Chem. Phys. 334 180

    [4]

    Feng X H, Meng Q Y, Sun J T, L S C 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣 2011 物理学报 60 037806]

    [5]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [6]

    Kodaira C A, Britoa H F, Malta O L, Serrac O A 2003 J. Lumin 101 11

    [7]

    Jia P Y, Liu X M, M Yu, Luo Y, Fang J, Lin J 2006 Chem Phys Lett. 424 358

    [8]

    Kodaira C A, Brito H F., Felinto M C F C 2003 J. Solid State Chem. 171 401

    [9]

    Tian Y, Chen B J, Yu H Q, Hua R N 2011 J. Colloid Interface Sci. 360 586

    [10]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [11]

    Yang H M, Wang Z L, Gong M L, Liang H B 2009 J. Alloys Compd. 488 331

    [12]

    Li C X, Lin C K, Liu X M, Lin J 2008 J. Nanosci. Nanotechnol. 8 1183

    [13]

    Xia Z G, Chen D M 2010 J. Am. Ceram. Soc. 93 1397

    [14]

    Tian Y, Liu Y, Hua R N, Na L Y, Chen B J 2012 Mater. Res. Bull. 47 59

    [15]

    Jin Y Hao Z D Zhang X, Luo Y S, Wang X J, Zhang J H 2011 Opt. Mater. 33 1591

    [16]

    Huang S H, Lou L R 1990 Chin. J. Lumin 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [17]

    Meng Q Y, Chen B J, Xu W, Yang Y M 2007 J. Appl. Phys. 102 093505

    [18]

    Tian Y, Chen B J, Tian B N, Hua R N, Sun J S 2011 J. Alloys Compd. 509 6096

    [19]

    Suhasini T, Kumar J S, Sasikala T, Jang K, Lee H S, Jayasimhadri M, Jeong J H, Yi S S, Moorthy L R 2009 Opt. Mater. 31 1167

    [20]

    Inokuti M, Hirayama F 1965 J. Chem. Phys. 43 1978

    [21]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1]

    Ryu J H, Bang S Y, Kim W S, Park G S, Kim K M, Yoon J W, Shim K B, Koshizaki N 2007 J. Alloys Compd. 441 146

    [2]

    Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏 2010 物理学报 59 1321]

    [3]

    Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longa E 2007 Chem. Phys. 334 180

    [4]

    Feng X H, Meng Q Y, Sun J T, L S C 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣 2011 物理学报 60 037806]

    [5]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [6]

    Kodaira C A, Britoa H F, Malta O L, Serrac O A 2003 J. Lumin 101 11

    [7]

    Jia P Y, Liu X M, M Yu, Luo Y, Fang J, Lin J 2006 Chem Phys Lett. 424 358

    [8]

    Kodaira C A, Brito H F., Felinto M C F C 2003 J. Solid State Chem. 171 401

    [9]

    Tian Y, Chen B J, Yu H Q, Hua R N 2011 J. Colloid Interface Sci. 360 586

    [10]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [11]

    Yang H M, Wang Z L, Gong M L, Liang H B 2009 J. Alloys Compd. 488 331

    [12]

    Li C X, Lin C K, Liu X M, Lin J 2008 J. Nanosci. Nanotechnol. 8 1183

    [13]

    Xia Z G, Chen D M 2010 J. Am. Ceram. Soc. 93 1397

    [14]

    Tian Y, Liu Y, Hua R N, Na L Y, Chen B J 2012 Mater. Res. Bull. 47 59

    [15]

    Jin Y Hao Z D Zhang X, Luo Y S, Wang X J, Zhang J H 2011 Opt. Mater. 33 1591

    [16]

    Huang S H, Lou L R 1990 Chin. J. Lumin 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [17]

    Meng Q Y, Chen B J, Xu W, Yang Y M 2007 J. Appl. Phys. 102 093505

    [18]

    Tian Y, Chen B J, Tian B N, Hua R N, Sun J S 2011 J. Alloys Compd. 509 6096

    [19]

    Suhasini T, Kumar J S, Sasikala T, Jang K, Lee H S, Jayasimhadri M, Jeong J H, Yi S S, Moorthy L R 2009 Opt. Mater. 31 1167

    [20]

    Inokuti M, Hirayama F 1965 J. Chem. Phys. 43 1978

    [21]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1] 姜洪喜, 吕树臣. Sm3+掺杂NaLa(WO4)2单一基质白光荧光粉制备及发光性能. 物理学报, 2021, 70(17): 177801. doi: 10.7498/aps.70.20210493
    [2] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [3] 熊晓波, 刘万里, 袁曦明, 刘金存, 宋江齐, 梁玉军. SrZn2(PO4)2:Sn2+,Mn2+荧光粉的发光性质及其能量传递机理. 物理学报, 2015, 64(24): 247801. doi: 10.7498/aps.64.247801
    [4] 熊晓波, 袁曦明, 刘金存, 宋江齐. Na2SrMg(PO4)2: Ce3+, Mn2+荧光粉的发光性质及其能量传递机理. 物理学报, 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [5] 刘红利, 郝玉英, 许并社. 白光发光二级管用红色荧光粉LiSrBO3: Eu3+的制备与发光性能研究. 物理学报, 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [6] 米瑞宇, 夏志国, 刘海坤. Ce3+, Mn2+共掺的Ca4Y6 (SiO4)6F2的发光性质和能量传递. 物理学报, 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [7] 梁锋, 胡义华, 陈丽, 王小涓. 荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递. 物理学报, 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [8] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应. 物理学报, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [9] 桑士晶, 吕树臣, 曲秀荣, 杨晓旭, 张丽丽. 纳米晶ZrO2:Eu3+-Bi3+的制备及Bi3+敏化Eu3+特征发射的研究. 物理学报, 2012, 61(22): 227801. doi: 10.7498/aps.61.227801
    [10] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递. 物理学报, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [11] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [12] 杨志平, 杨广伟, 王少丽, 田 晶, 李盼来, 李 旭. Eu2+,Mn2+在BaZnP2O7中的发光及Eu2+→Mn2+能量传递. 物理学报, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [13] 徐 登, 叶莉华, 崔一平, 奚 俊, 李 丽, 王 琼. 基于有机染料盐掺杂薄膜体系的能量转移及光致发光特性研究. 物理学报, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [14] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [15] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究. 物理学报, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [16] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [17] 符史流, 尹 涛, 丁球科, 赵韦人. Eu3+掺杂的Sr2CeO4发光材料的光致发光研究. 物理学报, 2006, 55(9): 4940-4945. doi: 10.7498/aps.55.4940
    [18] 孙世菊, 滕 枫, 徐 征, 张延芬, 侯延冰. 聚乙烯基咔唑与Alq3混合薄膜的发光性能与能量传递过程. 物理学报, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [19] 李丹, 吕少哲, 陈宝玖, 王海宇, 唐波, 张家骅, 侯尚公, 黄世华. Y2O3:Eu纳米晶中能量传递相互作用的研究. 物理学报, 2001, 50(5): 933-937. doi: 10.7498/aps.50.933
    [20] 王殿元, 谢平波, 张慰萍, 楼立人, 夏上达. 稀土离子发光体系中能量传递和迁移模型的研究. 物理学报, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
计量
  • 文章访问数:  4291
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-26
  • 修回日期:  2013-06-21
  • 刊出日期:  2013-10-05

CaWO4:Sm3+荧光粉的发光性质及其能量传递机理

  • 1. 哈尔滨师范大学物理与电子工程学院, 光电带隙材料省部共建教育部重点实验室, 哈尔滨 150025
    基金项目: 国家自然科学基金(批准号:51002041);黑龙江省普通高等学校青年学术骨干支持计划(批准号:1252G032)和哈尔滨师范大学青年学术骨干资助计划(批准号:11KXQ-06)资助的课题.

摘要: 采用沉淀法制备了不同Sm3+掺杂浓度的白钨矿结构CaWO4荧光粉材料. 对CaWO4:Sm3+ 材料的光致发光性质的研究结果表明, 在404 nm光照下样品可以实现色纯度较高的红光发射, 而短波紫外240 nm光照下除Sm3+的特征发射外还能观察到CaWO4自激发发射, 能够获得较强的白光; 实验发现Sm3+掺杂浓度为2%时样品的发光强度最高; 通过对实验数据的分析确定了Sm3+之间的能量传递类型为电偶极-电偶极相互作用, 并计算了能量传递的临界距离大约为2.0 nm.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回