搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变

余本海 陈东

引用本文:
Citation:

用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变

余本海, 陈东

Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory

Yu Ben-Hai, Chen Dong
PDF
导出引用
  • 运用第一性原理赝势方法,对氮化硅新相(六方P6和P6'相)的电子结构、光学性质和相变过程进行分析,研究能带结构、介电函数谱、反射谱和能量损失函数的变化机理. 研究发现, P6 相变是可行的,在室温下P6和P6 相变的临界压强分别为42.9 和47.7 GPa; 相界的斜率为正值表明P6 相变过程伴随着晶胞体积的塌缩; P6和P6' 相分别属于直接带隙和间接带隙半导体,能隙宽度分别为4.98和4.01 eV;得到了两相的零频介电常数; 反射谱表明,两相的强反射峰均位于真空紫外线区域,因此可以用作紫外光屏蔽或紫外探测材料; 在可见光区域,两相表现为近似透明.
    Characteristics of the hexagonal polymorph Si3N4 i.e., phase transition, electronic and optical properties (band structure, dielectric function, reflectivity and energy loss function) are investigated by the first-principles pseudo-potential method. The results suggest that it is feasible that the P6 transition takes place at room temperature. The critical pressures of the P6 and P6 transformations are 42.9 and 47.7~GPa, respectively. The phase transition from P6 is accompanied by the volume shrinkage. The calculated results also show that the P6 and P6' phases belong to direct bandgap and indirect bandgap semiconductors, respectively. The calculated band gaps are 4.98 and 4.01 eV for the P6 and P6' phases, respectively. Besides, the static dielectric constants are also obtained. The reflectivity shows that the two phases can serve as the shielding and detecting devices for ultraviolet radiation and they have optical transparent behaviors in the visible light region.
    • 基金项目: 国家自然科学基金(批准号:U1204501, 11105115, 11304141)、河南省科技计划(批准号:112300410021)和河南省教育厅科学技术研究重点项目(批准号:12A140010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1204501, 11105115, 11304141), the Project of Basic and Advanced Technology of Henan Province of China (Grant No. 112300410021), and the Key Project of Science and Technology Research Program of Henan Educational Committee, China (Grant No. 12A140010).
    [1]

    Liu A Y, Cohen M L 1990 Phys. Rev. B 41 10727

    [2]

    Ding W, Liu Y, Zhang Y, Guo J, Zuo Y, Cheng B, Yu J, Wang Q 2009 Chin. Phys. B 18 3044

    [3]

    Ching W Y, Xu Y N, Gale J D, Rhle M 1998 J. Am. Ceram. Soc. 81 3189

    [4]

    Yashima M, Ando Y, Tabira Y 2007 J. Phys. Chem. 111 3609

    [5]

    Kocer C, Hirosaki N, Ogata S 2003 Phys. Rev. B 67 035210

    [6]

    Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueβ H, Kroll P, Boehler R 1999 Nature 400 340

    [7]

    Kroll P, von Appen J 2001 Phys. Stat. Sol. B 226 R6

    [8]

    Kroll P 2003 J. Solid State Chem. 176 530

    [9]

    Ching W Y, Mo S D, Ouyang L Z, Rulis P 2002 J. Am. Ceram. Soc. 85 75

    [10]

    Danilenko N V, Oleinik G S, Dobrovol'skii V D, Britun V F, Semenenko N P 1992 Sov. Powder Metal. Met. Ceram. 31 1035

    [11]

    Lee D D, Kang S J L, Petzow G, Yoon D N 2005 J. Am. Ceram. Soc. 73 767

    [12]

    Jiang J Z, Kragh F, Frost D J, Ståhl K, Lindelov H 2001 J. Phys.: Condens. Matter 13 L515

    [13]

    Kuwabara A, Matsunaga K, Tanaka I 2008 Phys. Rev. B 78 064104

    [14]

    Xu B, Dong J J, McMillan P F, Shebanova O, Salamat A 2011 Phys. Rev. B 84 014113

    [15]

    Togo A, Kroll P 2008 J. Comput. Chem. 29 2255

    [16]

    Tatsumi K, Tanaka I, Adachi H 2002 J. Am. Ceram. Soc. 85 7

    [17]

    Yu B H, Chen D 2013 J. Alloys Compd. 581 747

    [18]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [19]

    von Lilienfeld O A, Tavernelli I, Rothlisberger U, Sebastiani D 2004 Phys. Rev. Lett. 93 153004

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [23]

    Blanco M A, Francisco E, Luańa V 2004 Comput. Phys. Commun. 158 57

    [24]

    Flórez M, Recio J M, Francisco E, Blanco M A, Martin-Pendás A 2002 Phys. Rev. B 66 144112

    [25]

    Clausius R 1850 Ann. Phys. 155 500

    [26]

    Jiao Z Y, Guo Y L, Niu Y J, Zhang X Z 2013 Acta Phys. Sin. 62 073101 (in Chinese) [焦照勇, 郭永亮, 牛毅君, 张现周 2013 物理学报 62 073101]

    [27]

    Mori-Sanchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401

    [28]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [29]

    Xu Y N, Ching W Y 1995 Phys. Rev. B 51 17379

    [30]

    Ching W Y, Mo S D, Ouyang L Z 2001 Phys. Rev. B 63 245110

    [31]

    Pan H Z, Xu M, Zhu W J, Zhou H P 2006 Acta Phys. Sin. 55 3585 (in Chinese) [潘洪哲, 徐明, 祝文军, 周海平 2006 物理学报 55 3585]

    [32]

    de Krönig R L 1926 J. Opt. Soc. Am. 12 547

    [33]

    Ding Y C, Xu M, Shen Y B, Chen Q Y, Duan M Y 2007 J. Sichuan Norm. Univ. (Nat. Sci.) 30 755 (in Chinese) [丁迎春, 徐明, 沈益斌, 陈青云, 段满益 2007 四川师范大学学报 (自然科学版) 30 755]

    [34]

    Li X Z, Xie Q, Chen Q, Zhao F J, Cui D M 2010 Acta Phys. Sin. 59 2016 (in Chinese) [李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌 2010 物理学报 59 2016]

    [35]

    Allai D, Bouhemadou A, Bin-Omran S 2011 Compt. Mater. Sci. 51 194

    [36]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese) [王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

  • [1]

    Liu A Y, Cohen M L 1990 Phys. Rev. B 41 10727

    [2]

    Ding W, Liu Y, Zhang Y, Guo J, Zuo Y, Cheng B, Yu J, Wang Q 2009 Chin. Phys. B 18 3044

    [3]

    Ching W Y, Xu Y N, Gale J D, Rhle M 1998 J. Am. Ceram. Soc. 81 3189

    [4]

    Yashima M, Ando Y, Tabira Y 2007 J. Phys. Chem. 111 3609

    [5]

    Kocer C, Hirosaki N, Ogata S 2003 Phys. Rev. B 67 035210

    [6]

    Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueβ H, Kroll P, Boehler R 1999 Nature 400 340

    [7]

    Kroll P, von Appen J 2001 Phys. Stat. Sol. B 226 R6

    [8]

    Kroll P 2003 J. Solid State Chem. 176 530

    [9]

    Ching W Y, Mo S D, Ouyang L Z, Rulis P 2002 J. Am. Ceram. Soc. 85 75

    [10]

    Danilenko N V, Oleinik G S, Dobrovol'skii V D, Britun V F, Semenenko N P 1992 Sov. Powder Metal. Met. Ceram. 31 1035

    [11]

    Lee D D, Kang S J L, Petzow G, Yoon D N 2005 J. Am. Ceram. Soc. 73 767

    [12]

    Jiang J Z, Kragh F, Frost D J, Ståhl K, Lindelov H 2001 J. Phys.: Condens. Matter 13 L515

    [13]

    Kuwabara A, Matsunaga K, Tanaka I 2008 Phys. Rev. B 78 064104

    [14]

    Xu B, Dong J J, McMillan P F, Shebanova O, Salamat A 2011 Phys. Rev. B 84 014113

    [15]

    Togo A, Kroll P 2008 J. Comput. Chem. 29 2255

    [16]

    Tatsumi K, Tanaka I, Adachi H 2002 J. Am. Ceram. Soc. 85 7

    [17]

    Yu B H, Chen D 2013 J. Alloys Compd. 581 747

    [18]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [19]

    von Lilienfeld O A, Tavernelli I, Rothlisberger U, Sebastiani D 2004 Phys. Rev. Lett. 93 153004

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [23]

    Blanco M A, Francisco E, Luańa V 2004 Comput. Phys. Commun. 158 57

    [24]

    Flórez M, Recio J M, Francisco E, Blanco M A, Martin-Pendás A 2002 Phys. Rev. B 66 144112

    [25]

    Clausius R 1850 Ann. Phys. 155 500

    [26]

    Jiao Z Y, Guo Y L, Niu Y J, Zhang X Z 2013 Acta Phys. Sin. 62 073101 (in Chinese) [焦照勇, 郭永亮, 牛毅君, 张现周 2013 物理学报 62 073101]

    [27]

    Mori-Sanchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401

    [28]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [29]

    Xu Y N, Ching W Y 1995 Phys. Rev. B 51 17379

    [30]

    Ching W Y, Mo S D, Ouyang L Z 2001 Phys. Rev. B 63 245110

    [31]

    Pan H Z, Xu M, Zhu W J, Zhou H P 2006 Acta Phys. Sin. 55 3585 (in Chinese) [潘洪哲, 徐明, 祝文军, 周海平 2006 物理学报 55 3585]

    [32]

    de Krönig R L 1926 J. Opt. Soc. Am. 12 547

    [33]

    Ding Y C, Xu M, Shen Y B, Chen Q Y, Duan M Y 2007 J. Sichuan Norm. Univ. (Nat. Sci.) 30 755 (in Chinese) [丁迎春, 徐明, 沈益斌, 陈青云, 段满益 2007 四川师范大学学报 (自然科学版) 30 755]

    [34]

    Li X Z, Xie Q, Chen Q, Zhao F J, Cui D M 2010 Acta Phys. Sin. 59 2016 (in Chinese) [李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌 2010 物理学报 59 2016]

    [35]

    Allai D, Bouhemadou A, Bin-Omran S 2011 Compt. Mater. Sci. 51 194

    [36]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese) [王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 康健彬, 李倩, 李沫. 氮化物子带跃迁探测器材料结构对器件效率的影响. 物理学报, 2019, 68(22): 228501. doi: 10.7498/aps.68.20190722
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [5] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [7] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [8] 王瑨, 李春梅, 敖靖, 李凤, 陈志谦. IVB族过渡金属氮化物弹性与光学性质研究. 物理学报, 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [9] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质. 物理学报, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [10] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 王艳丽, 苏克和, 王欣, 刘艳. 超长(n,n)型碳纳米管的密度泛函理论研究. 物理学报, 2011, 60(9): 098111. doi: 10.7498/aps.60.098111
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究. 物理学报, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [15] 刘强, 程新路, 李德华, 杨则金. Al和N共掺对Zn1-xMgxO光学性质的影响. 物理学报, 2010, 59(12): 8829-8835. doi: 10.7498/aps.59.8829
    [16] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响. 物理学报, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [17] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [19] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  4042
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 修回日期:  2013-11-07
  • 刊出日期:  2014-02-05

用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变

  • 1. 信阳师范学院物理电子工程学院, 信阳 464000
    基金项目: 国家自然科学基金(批准号:U1204501, 11105115, 11304141)、河南省科技计划(批准号:112300410021)和河南省教育厅科学技术研究重点项目(批准号:12A140010)资助的课题.

摘要: 运用第一性原理赝势方法,对氮化硅新相(六方P6和P6'相)的电子结构、光学性质和相变过程进行分析,研究能带结构、介电函数谱、反射谱和能量损失函数的变化机理. 研究发现, P6 相变是可行的,在室温下P6和P6 相变的临界压强分别为42.9 和47.7 GPa; 相界的斜率为正值表明P6 相变过程伴随着晶胞体积的塌缩; P6和P6' 相分别属于直接带隙和间接带隙半导体,能隙宽度分别为4.98和4.01 eV;得到了两相的零频介电常数; 反射谱表明,两相的强反射峰均位于真空紫外线区域,因此可以用作紫外光屏蔽或紫外探测材料; 在可见光区域,两相表现为近似透明.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回