搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超长(n,n)型碳纳米管的密度泛函理论研究

王艳丽 苏克和 王欣 刘艳

引用本文:
Citation:

超长(n,n)型碳纳米管的密度泛函理论研究

王艳丽, 苏克和, 王欣, 刘艳

Theoretical study on the ultra long armchair (n,n) single walled carbon nanotubes with first principle density functional theory

Wang Yan-Li, Su Ke-He, Wang Xin, Liu Yan
PDF
导出引用
  • 用密度泛函B3LYP/3-21G(d)方法,并利用周期边界条件,研究了n=2—20不同管径的超长(n, n)型单壁碳纳米管的结构、能量、能带结构和能隙.结果表明,管径和能量(或生成焓)都随n有很好的变化规律,并可拟合成很好的解析函数.当n为2和3时,碳纳米管的能隙分别为1.836eV和0.228eV,呈半导体特征,且具有间接带隙;当n=4—20时,能隙介于0.027 eV和0.079 eV之间,呈较强的金属性,且具有直接带
    The armchair (n,n) single walled carbon nanotubes with n=2—20 are studied by using the first principle density functional theory at the B3LYP/3-21G(d) level of theory combined with the periodic boundary conditions in simulating the ultra long tube model. The structure parameter, the energy, the band structure, and the energy gaps are obtained. The results show that the tube diameter and the energy of formation are closely related to n. The fitted analytical equations are developed with a correlation coefficient larger than 0.999. The energy gaps of (2,2) and (3,3) carbon nanotubes are 1.836 eV and 0.228 eV and the tubes have indirect energy gaps. For n=4 to 20, the energy gaps are quite small (between 0.027 eV and 0.079 eV), showing metal conductivity as well as direct energy gaps.
    • 基金项目: 国家自然科学基金(批准号:50572089)资助的课题.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Ilijima S 1993 Mater. Sci. Eng. B 19 172

    [3]

    Robertson J 2007 Mater Today 10 36

    [4]

    Oku T, Narita I 2002 Physica B 323 216

    [5]

    Bahram B Shirvani, Javad Beheshtian, Mehdi D Esrafili, Nasser L Hadipour 2010 Physica B 405 1455

    [6]

    Saeidi M, Vaezzadeh M 2009 Physica E 41 1723

    [7]

    Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T 2010 Carbon 48 575

    [8]

    Tien L G, Tsai C H, Li F Y, Lee M H 2008 Diamond Relat. Mater. 17 563

    [9]

    Kawakami Y, Nojima Y, Doi K, Nakamura K, Tachibana A 2004 Electrochim. Acta 50 739

    [10]

    Barone V, Heyd J, Scuseria G E 2004 Chem. Phys. Lett. 389 289

    [11]

    Satio R,Fujita M, Dresselhaus G 1992 Appl. Phys. Lett. 60 2240

    [12]

    Behabtu N, Green M J, Pasquali M 2008 Nano Today 3 24

    [13]

    Geoffrey M Spinks, Su Ryon Shin, Gordon G Wallace, Philip G Whitten, In Young Kim, Sun I Kim, Seon Jeong Kim 2007 Sens. Actuators B 121 616

    [14]

    Yao M G., Liu B B, Zou Y G, Wang L, Li D M, Cui T, Zou G T, Sundqvist B 2005 Carbon 43 2894

    [15]

    Chen C W, Lee M H, Clark S J 2004 Appl. Surf. Sci. 228 143

    [16]

    Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J 2004 Chem. Phys. Lett. 383 104

    [17]

    Seifi M, Ross D K, Giannasi A. 2007 Carbon 4 1871

    [18]

    Charlotte T M, Kwok B J, Reizman D E, Agnew, Gurjit S S, Weistroffer J, Michael S S, Edmund G S 2010 Carbon 48 1279

    [19]

    Matthew R M, Placidus B A, Amit G, Zafar I, Timothy S F 2006 Carbon 44 2758

    [20]

    Gabriel G, Sauthier G, Fraxedas J, Moreno-Maas M, Martínez M T, Miravitlles C, Casabó J 2006 Carbon 44 1891

    [21]

    Christian Klinke, Ali Afzali, Phaedon Avouris 2006 Chem. Phys. Lett. 430 75

    [22]

    Chen L N, OuYang F P, Ma S S, Wu X Z, Xiao J, Xu H 2010 Phys. Lett. A 374 4343

    [23]

    Budyka M F, Zyubina T S, Ryabenko A G, Lin S H, Mebe A M 2005 Chem. Phys. Lett. 407 266

    [24]

    Xu H, Xiao J, Ouyang F P 2010 Acta Phys. Sin. 59 4186 (in Chinese)[徐 慧、肖 金、欧阳方平 2010 物理学报 59 4186]

    [25]

    Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 (in Chinese)[魏 燕、胡慧芳、王志勇、程彩萍、陈南庭、谢 能 2011 物理学报 60 ](已接受)

    [26]

    Wang S F, Chen L Y, Zhang Y, Zhang J M, Xu K W J 2010 Mol. Struct. 962 108

    [27]

    Zhou G, Yoshiyuki Kawazoe 2002 Physica B 32 196

    [28]

    Ouyang F P, Peng S L, Chen L N, Sun S Y, Xu H 2011 Chin. Phys. 20 027102

    [29]

    Wang Y L, Yan H X, Huang Y, Zhang J P 2010 J. Mol.Sci. 27 34 (in Chinese)[王艳丽、颜红侠、黄 英、张军平 2010 分子科学学报 27 34]

    [30]

    Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders V R, in: Lipkowitz K B, Larter R, Cundari T R. (Eds.) 2005 Reviews in Computational Chemistry Wiley (New York) 21 1

    [31]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, K Toyota G, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian 09, Revision A.02, Gaussian, Inc Wallingford CT 2009

    [32]

    Verlag C,Weinheim 1968 Handbuch der Anorganischen Chemie (vol. 14B/2) p143

    [33]

    Mashreghi A, Moshksar M M 2010 Computational Materials Science 49 871

    [34]

    Budyka M F, Zyubina T S, Ryabenko A G, Lin S H, Mebel A M 2005 Chem. Phys. Lett. 407 266

    [35]

    Dresselhaus M S, Dresselhaus G, Saito R 1995 Carbon 33 883

    [36]

    Roberto S, Mauro B, Takahisa O 2009 Chem. Phys. Lett. 480 215

    [37]

    Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y 2004 Phys Rev. Lett. 92 125502

    [38]

    Qin L C, Zhao X L, Hirahara K, Miyamoto Y, Ando Y,lijima S 2000 Nature 408 50

    [39]

    Wang L, Tang Z K, Li G D, Chen J S 2000 Nature 408 50

    [40]

    Satio R, Dresselhaus G, Dresselhaus M S 1998 Physical properties of carbon nanotubes (London: Imperial College Press)

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Ilijima S 1993 Mater. Sci. Eng. B 19 172

    [3]

    Robertson J 2007 Mater Today 10 36

    [4]

    Oku T, Narita I 2002 Physica B 323 216

    [5]

    Bahram B Shirvani, Javad Beheshtian, Mehdi D Esrafili, Nasser L Hadipour 2010 Physica B 405 1455

    [6]

    Saeidi M, Vaezzadeh M 2009 Physica E 41 1723

    [7]

    Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T 2010 Carbon 48 575

    [8]

    Tien L G, Tsai C H, Li F Y, Lee M H 2008 Diamond Relat. Mater. 17 563

    [9]

    Kawakami Y, Nojima Y, Doi K, Nakamura K, Tachibana A 2004 Electrochim. Acta 50 739

    [10]

    Barone V, Heyd J, Scuseria G E 2004 Chem. Phys. Lett. 389 289

    [11]

    Satio R,Fujita M, Dresselhaus G 1992 Appl. Phys. Lett. 60 2240

    [12]

    Behabtu N, Green M J, Pasquali M 2008 Nano Today 3 24

    [13]

    Geoffrey M Spinks, Su Ryon Shin, Gordon G Wallace, Philip G Whitten, In Young Kim, Sun I Kim, Seon Jeong Kim 2007 Sens. Actuators B 121 616

    [14]

    Yao M G., Liu B B, Zou Y G, Wang L, Li D M, Cui T, Zou G T, Sundqvist B 2005 Carbon 43 2894

    [15]

    Chen C W, Lee M H, Clark S J 2004 Appl. Surf. Sci. 228 143

    [16]

    Liu B C, Lyu S C, Jung S I, Kang H K, Yang C W, Park J W, Park C Y, Lee C J 2004 Chem. Phys. Lett. 383 104

    [17]

    Seifi M, Ross D K, Giannasi A. 2007 Carbon 4 1871

    [18]

    Charlotte T M, Kwok B J, Reizman D E, Agnew, Gurjit S S, Weistroffer J, Michael S S, Edmund G S 2010 Carbon 48 1279

    [19]

    Matthew R M, Placidus B A, Amit G, Zafar I, Timothy S F 2006 Carbon 44 2758

    [20]

    Gabriel G, Sauthier G, Fraxedas J, Moreno-Maas M, Martínez M T, Miravitlles C, Casabó J 2006 Carbon 44 1891

    [21]

    Christian Klinke, Ali Afzali, Phaedon Avouris 2006 Chem. Phys. Lett. 430 75

    [22]

    Chen L N, OuYang F P, Ma S S, Wu X Z, Xiao J, Xu H 2010 Phys. Lett. A 374 4343

    [23]

    Budyka M F, Zyubina T S, Ryabenko A G, Lin S H, Mebe A M 2005 Chem. Phys. Lett. 407 266

    [24]

    Xu H, Xiao J, Ouyang F P 2010 Acta Phys. Sin. 59 4186 (in Chinese)[徐 慧、肖 金、欧阳方平 2010 物理学报 59 4186]

    [25]

    Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T, Xie N 2011 Acta Phys. Sin. 60 (in Chinese)[魏 燕、胡慧芳、王志勇、程彩萍、陈南庭、谢 能 2011 物理学报 60 ](已接受)

    [26]

    Wang S F, Chen L Y, Zhang Y, Zhang J M, Xu K W J 2010 Mol. Struct. 962 108

    [27]

    Zhou G, Yoshiyuki Kawazoe 2002 Physica B 32 196

    [28]

    Ouyang F P, Peng S L, Chen L N, Sun S Y, Xu H 2011 Chin. Phys. 20 027102

    [29]

    Wang Y L, Yan H X, Huang Y, Zhang J P 2010 J. Mol.Sci. 27 34 (in Chinese)[王艳丽、颜红侠、黄 英、张军平 2010 分子科学学报 27 34]

    [30]

    Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders V R, in: Lipkowitz K B, Larter R, Cundari T R. (Eds.) 2005 Reviews in Computational Chemistry Wiley (New York) 21 1

    [31]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, K Toyota G, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian 09, Revision A.02, Gaussian, Inc Wallingford CT 2009

    [32]

    Verlag C,Weinheim 1968 Handbuch der Anorganischen Chemie (vol. 14B/2) p143

    [33]

    Mashreghi A, Moshksar M M 2010 Computational Materials Science 49 871

    [34]

    Budyka M F, Zyubina T S, Ryabenko A G, Lin S H, Mebel A M 2005 Chem. Phys. Lett. 407 266

    [35]

    Dresselhaus M S, Dresselhaus G, Saito R 1995 Carbon 33 883

    [36]

    Roberto S, Mauro B, Takahisa O 2009 Chem. Phys. Lett. 480 215

    [37]

    Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y 2004 Phys Rev. Lett. 92 125502

    [38]

    Qin L C, Zhao X L, Hirahara K, Miyamoto Y, Ando Y,lijima S 2000 Nature 408 50

    [39]

    Wang L, Tang Z K, Li G D, Chen J S 2000 Nature 408 50

    [40]

    Satio R, Dresselhaus G, Dresselhaus M S 1998 Physical properties of carbon nanotubes (London: Imperial College Press)

  • [1] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [2] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [3] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性. 物理学报, 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [4] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [5] 张振江, 胡小会, 孙立涛. 单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变. 物理学报, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [6] 许俊敏, 胡小会, 孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究. 物理学报, 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [7] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究 . 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [8] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [9] 李蕾蕾, 于宗光, 肖志强, 周昕杰. SOI SONOS EEPROM 总剂量辐照阈值退化机理研究. 物理学报, 2011, 60(9): 098502. doi: 10.7498/aps.60.098502
    [10] 徐慧, 肖金, 欧阳方平. 扶手椅型单壁碳纳米管中的B/N对共掺杂. 物理学报, 2010, 59(6): 4186-4193. doi: 10.7498/aps.59.4186
    [11] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [12] 欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究. 物理学报, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [13] 金子飞, 童国平, 蒋永进. 非近邻跳跃对扶手椅型石墨烯纳米带电子结构的影响. 物理学报, 2009, 58(12): 8537-8543. doi: 10.7498/aps.58.8537
    [14] 陈健, 李小丽, 李海华, 王庆康. 基于正方和六角排列结构光子晶体对发光二极管出光效率的研究. 物理学报, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [15] 钟兰花, 吴福根. 水波在周期性钻孔底部结构中的传播及其能带. 物理学报, 2009, 58(9): 6363-6368. doi: 10.7498/aps.58.6363
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 王同标, 刘念华. 正负折射率材料组成的一维光子晶体的能带及电场. 物理学报, 2007, 56(10): 5878-5882. doi: 10.7498/aps.56.5878
    [18] 张 滨, 王玉芳, 金庆华, 李宝会, 丁大同. 单壁碳纳米扶手椅、锯齿管声子色散关系的计算. 物理学报, 2005, 54(3): 1325-1329. doi: 10.7498/aps.54.1325
    [19] 柴永泉, 靳常青, 刘邦贵. 类MgB2硼化物晶体电子结构比较研究. 物理学报, 2003, 52(11): 2883-2889. doi: 10.7498/aps.52.2883
    [20] 张红群. 扶手椅形碳纳米管的Peierls相变研究. 物理学报, 2000, 49(5): 936-938. doi: 10.7498/aps.49.936
计量
  • 文章访问数:  5309
  • PDF下载量:  591
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-24
  • 修回日期:  2011-04-06
  • 刊出日期:  2011-09-15

超长(n,n)型碳纳米管的密度泛函理论研究

  • 1. 西北工业大学空间应用物理与化学教育部重点实验室,理学院应用化学系,西安 710072
    基金项目: 国家自然科学基金(批准号:50572089)资助的课题.

摘要: 用密度泛函B3LYP/3-21G(d)方法,并利用周期边界条件,研究了n=2—20不同管径的超长(n, n)型单壁碳纳米管的结构、能量、能带结构和能隙.结果表明,管径和能量(或生成焓)都随n有很好的变化规律,并可拟合成很好的解析函数.当n为2和3时,碳纳米管的能隙分别为1.836eV和0.228eV,呈半导体特征,且具有间接带隙;当n=4—20时,能隙介于0.027 eV和0.079 eV之间,呈较强的金属性,且具有直接带

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回