搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变换热力学的任意形状热集中器研究与设计

李廷华 毛福春 黄铭 杨晶晶 陈俊昌

引用本文:
Citation:

基于变换热力学的任意形状热集中器研究与设计

李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌

Research and design of thermal concentrator with arbitrary shape based on transformation thermodynamics

Li Ting-Hua, Mao Fu-Chun, Huang Ming, Yang Jing-Jing, Chen Jun-Chang
PDF
导出引用
  • 如何灵活地控制和操纵热流是目前研究的热点. 本文根据变换热力学方法,导出了具有任意横截面形状热集中器的材料参数表达式,并在此基础上设计了具有圆形、椭圆形、正五边形等规则横截面形状的热集中器和具有共形、非共形任意横截面形状的热集中器. 全波仿真结果表明,这些热集中器使等温线和热通量向其压缩区弯曲,靠近热源的一侧热扩散加快而相反的一侧热扩散减慢,在很小的区域内表现出对热量的集中作用,这一特点在热能工程中有潜在应用. 此外,研究了圆柱形热集中器的层化实现方法. 结果显示,热集中器可通过将同性材料沿角向分层交替填充来实现. 这项工作对热集中器的设计及制备具有指导意义.
    How to control and manipulate the heat flow in a flexible way is a hotspot of current research. According to transformation thermodynamics method, material parameter expressions for thermal concentrator with an arbitrary cross section are derived, and thermal concentrator with special symmetrical profiles, such as circle, ellipse, and pentagon, as well as thermal concentrator with arbitrary conformal/non-conformal cross section are designed on this basis. Full wave simulation results show that these thermal concentrators can bend the isotherm and heat flux towards their compressive regions, making the heat diffuses faster on the side near heat source and slower on the opposite side. Heat concentrated into a tiny region may have potential applications in thermal engineering. In addition, research on layered realization method of cylindrical thermal concentrator is conducted. Results reveal that the thermal concentrator can be realized through alternatively filling isotropic materials into layers along the angular direction. This work has a guiding significance for the design and manufacturing of thermal concentrator.
    • 基金项目: 国家自然科学基金(批准号:61161007,61261002)、云南省自然科学基金重点项目(批准号:2013FA006)和云南省自然科学基金(批准号:2011FB018)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61161007, 61261002), the Key Program of Natural Science of Yunnan Province, China (Grant No. 2013FA006), and the Natural Science Foundation of Yunnan Province, China (Grant No. 2011FB018).
    [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [2]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [3]

    Kennedy D 2003 Science 302 2033

    [4]

    Leonhardt U 2006 Science 312 1777

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Yang J J, Huang M, Yang C F, Xiao Z, Peng J H 2009 Opt. Express 17 19661

    [8]

    Yang C F, Yang J J, Huang M, Peng J H, Cai G H 2010 Comput. Mater. Sci. 49 820

    [9]

    Yang J J, Huang M, Yang C F, Peng J H, Zong R 2010 Energies 3 1335

    [10]

    Chen H Y, Chan C. T. 2007 Appl. Phys. Lett. 90 241105

    [11]

    Li C, Meng X K, Liu X, Li F, Fang G Y, Chen H Y, Chan C T 2010 Phys. Rev. Lett. 105 233906

    [12]

    Li T H, Huang M, Yang J J, Yu J, Lan Y Z 2011 J. Phys. D: Appl. Phys. 44 325102

    [13]

    Chen H, Chan C T, Sheng P 2010 Nature materials 9 387

    [14]

    Wang Z, Dong J F, Liu J J, Luo X Y 2012 Acta Phys. Sin. 61 204101 (in Chinese) [王战, 董建峰, 刘锦景, 罗孝阳 2012 物理学报 61 204101]

    [15]

    Wang Z, Luo X Y, Liu J J, Dong J F 2013 Acta Phys. Sin. 62 024101 (in Chinese) [王战, 罗孝阳, 刘锦景, 董建峰 2013 物理学报 62 024101]

    [16]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [17]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 Phys. Rev. Lett. 101 220404

    [18]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001

    [19]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 物理学报 61 184301]

    [20]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 268

    [21]

    Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301

    [22]

    Yu Z Z, Feng Y J, Wang Z B, Zhao M J, Jiang T 2013 Chin. Phys. B 22 034102

    [23]

    Chen T, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103

    [24]

    Fan C Z, Gao Y, Huang J P 2008Appl. Phys. Lett. 92 251907

    [25]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [26]

    Guenneau S, Amra C, Veynante D 2012 Optics Express 20 8207

    [27]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [28]

    Han T C, Tao Y, Li B W, Qiu C W 2013 Scientific Reports 3 1593

    [29]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [30]

    He X, Wu L 2013 Appl. Phys. Lett. 102 211912

    [31]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102

    [32]

    Guenneau S, Amra C 2013 Optics Express 21 6578

    [33]

    Han T C, Zhao J J, Yuan T, Lei D Y, Li B W, Qiu C W 2013 Energy Environ. Sci. DOI: 10.1039/c3ee41512k

  • [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [2]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [3]

    Kennedy D 2003 Science 302 2033

    [4]

    Leonhardt U 2006 Science 312 1777

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Yang J J, Huang M, Yang C F, Xiao Z, Peng J H 2009 Opt. Express 17 19661

    [8]

    Yang C F, Yang J J, Huang M, Peng J H, Cai G H 2010 Comput. Mater. Sci. 49 820

    [9]

    Yang J J, Huang M, Yang C F, Peng J H, Zong R 2010 Energies 3 1335

    [10]

    Chen H Y, Chan C. T. 2007 Appl. Phys. Lett. 90 241105

    [11]

    Li C, Meng X K, Liu X, Li F, Fang G Y, Chen H Y, Chan C T 2010 Phys. Rev. Lett. 105 233906

    [12]

    Li T H, Huang M, Yang J J, Yu J, Lan Y Z 2011 J. Phys. D: Appl. Phys. 44 325102

    [13]

    Chen H, Chan C T, Sheng P 2010 Nature materials 9 387

    [14]

    Wang Z, Dong J F, Liu J J, Luo X Y 2012 Acta Phys. Sin. 61 204101 (in Chinese) [王战, 董建峰, 刘锦景, 罗孝阳 2012 物理学报 61 204101]

    [15]

    Wang Z, Luo X Y, Liu J J, Dong J F 2013 Acta Phys. Sin. 62 024101 (in Chinese) [王战, 罗孝阳, 刘锦景, 董建峰 2013 物理学报 62 024101]

    [16]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [17]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 Phys. Rev. Lett. 101 220404

    [18]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001

    [19]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 物理学报 61 184301]

    [20]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 268

    [21]

    Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301

    [22]

    Yu Z Z, Feng Y J, Wang Z B, Zhao M J, Jiang T 2013 Chin. Phys. B 22 034102

    [23]

    Chen T, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103

    [24]

    Fan C Z, Gao Y, Huang J P 2008Appl. Phys. Lett. 92 251907

    [25]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [26]

    Guenneau S, Amra C, Veynante D 2012 Optics Express 20 8207

    [27]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [28]

    Han T C, Tao Y, Li B W, Qiu C W 2013 Scientific Reports 3 1593

    [29]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [30]

    He X, Wu L 2013 Appl. Phys. Lett. 102 211912

    [31]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102

    [32]

    Guenneau S, Amra C 2013 Optics Express 21 6578

    [33]

    Han T C, Zhao J J, Yuan T, Lei D Y, Li B W, Qiu C W 2013 Energy Environ. Sci. DOI: 10.1039/c3ee41512k

  • [1] 管韵, 王波波. 环面黑洞的热力学函数. 物理学报, 2022, 71(11): 110401. doi: 10.7498/aps.70.20212370
    [2] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [3] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] 沈珏, 刘成周, 朱宁宁, 童一诺, 严晨成, 薛珂磊. 非对易施瓦西黑洞的热力学及其量子修正. 物理学报, 2019, 68(20): 200401. doi: 10.7498/aps.68.20191054
    [5] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [6] 夏舸, 杨立, 寇蔚, 杜永成. 非均匀背景中任意柱状热斗篷的研究与设计. 物理学报, 2017, 66(11): 114401. doi: 10.7498/aps.66.114401
    [7] 夏舸, 杨立, 寇蔚, 杜永成. 基于变换热力学的三维任意形状热斗篷设计. 物理学报, 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [8] 米尔阿里木江, 艾力, 买买提热夏提, 买买提, 亚森江, 吾甫尔. 非对易相空间中谐振子体系热力学性质的探讨. 物理学报, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [10] 毛福春, 李廷华, 黄铭, 杨晶晶, 贾邦婕. 圆柱形热集中器理论、仿真和实现. 物理学报, 2014, 63(17): 170507. doi: 10.7498/aps.63.170507
    [11] 毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌. 任意横截面柱形热斗篷研究与设计. 物理学报, 2014, 63(1): 014401. doi: 10.7498/aps.63.014401
    [12] 杨红卫, 钟万勰, 侯碧辉. 力学、热力学及电磁波导中的正则变换和辛描述. 物理学报, 2010, 59(7): 4437-4441. doi: 10.7498/aps.59.4437
    [13] 王红艳, 段文山. 对含有非热力学平衡离子的尘埃等离子体中孤波特性的理论研究. 物理学报, 2007, 56(7): 3977-3983. doi: 10.7498/aps.56.3977
    [14] 周史薇, 刘文彪. 非对易时空下Gibbons-Maeda dilaton黑洞和Garfinkle-Horowitz-Strominger dilaton黑洞的热力学性质. 物理学报, 2007, 56(11): 6767-6771. doi: 10.7498/aps.56.6767
    [15] 沈惠川. 分析热力学的应用:平衡态热力学中温度的相对论变换. 物理学报, 2005, 54(6): 2482-2488. doi: 10.7498/aps.54.2482
    [16] 曹治觉, 郭 愚. 冷凝器壁面滴状冷凝的热力学机理及最佳接触角. 物理学报, 1999, 48(10): 1823-1830. doi: 10.7498/aps.48.1823
    [17] 肖兴国, 赵峥. 具有内禀自旋的荷电稳态轴对称非Kerr-Newman黑洞的热力学性质. 物理学报, 1995, 44(5): 832-840. doi: 10.7498/aps.44.832
    [18] 汪卫华, 白海洋, 张云, 陈红, 王文魁. Ni-Si多层膜中固态非晶化反应的热力学与动力学过程. 物理学报, 1993, 42(9): 1499-1504. doi: 10.7498/aps.42.1499
    [19] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅰ)——一种新的广义不可逆热力学理论与热涨落中涨落—耗散表示式的非平衡修正. 物理学报, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
    [20] 程开甲. 内耗的热力学研究(Ⅰ). 物理学报, 1955, 11(2): 163-178. doi: 10.7498/aps.11.163
计量
  • 文章访问数:  4900
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-10
  • 修回日期:  2013-11-09
  • 刊出日期:  2014-03-05

/

返回文章
返回