搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管复合吸波涂层微波吸收性能的模拟计算

陈明东 揭晓华 张海燕

引用本文:
Citation:

碳纳米管复合吸波涂层微波吸收性能的模拟计算

陈明东, 揭晓华, 张海燕

Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating

Chen Ming-Dong, Jie Xiao-Hua, Zhang Hai-Yan
PDF
导出引用
  • 如何利用碳纳米管复合吸波涂层的参数进行吸波性能优化是电磁屏蔽研究的热点之一. 涂层参数对吸波性能影响的研究主要停留在实验探索阶段,而碳纳米管的结构参数对吸波性能影响的研究鲜有报道. 因此,从微观结构层次研究涂层参数对吸波性能的影响有重要意义. 基于多壁碳纳米管的等效电路,利用碳纳米管结构参数与等效电路各元件参数的关系,研究了碳纳米管损耗微波的机理,建立了碳纳米管结构参数与微波反射率的关系式. 根据此关系式,利用Matlab软件模拟计算了碳纳米管管长、管径、涂层中碳纳米管的含量以及涂层厚度对微波反射率的影响. 模拟计算结果表明:涂层的微波反射率随碳纳米管含量变化的模拟曲线与实验结果符合;碳纳米管含量和厚度是影响吸收峰位置和吸收强度的重要参量,而碳纳米管直径和长度是主要影响吸收峰强度的参量.
    How to optimize the absorbing microwave properties by using the parameters of carbon nanotube composite coating is a hotspot in the study of electromagnetic shielding. However, the study on the influence of coating parameters on absorbing microwave properties mainly stays in the stage of experimental study, and the influence of structure parameters of carbon nanotube on absorbing microwave properties has not been reported yet. Therefore, it is significant to study the method of optimizing the absorbing microwave properties of materials through micro-structure of the carbon nanotube composite coating. Based on an equivalent circuit of multi-wall carbon nanotubes, using the relationship between the parameters of each element in the equivalent circuit to study the mechanism of carbon nanotube loss microwave, an expression of absorbing microwave properties about carbon nanotube structure parameters is derived. According to the expression, the microwave reflection ratio of coating is calculated and simulated by Matlab software, which is affected by the length, diameter and coating thickness of carbon nanotube and the number of carbon nanotubes. The simulation result shows that the variation of reflection ratio curve of coating with the number of carbon nanotubes is consistent with the experimental results. The number of carbon nanotubes and the thickness of coating are the vital parameters, which influence the absorption intensity and absorption position, while the diameter and length of carbon nanotube are the vital parameters, which influence the absorption intensity.
    • 基金项目: 广东省科技计划(批准号:2009B090300017)和广东省国际合作项目(批准号:2011B050300017)资助的课题.
    • Funds: Project supported by the Scinece and Technology Program of Guangdong Province, China (Grant No. 2009B090300017) and the International Cooperation Program of Guangdong Province, China (Grant No. 2011B050300017).
    [1]

    Pan R Q 2011 Chin. Phys. Lett. 28 066104

    [2]

    Moradi A 2013 Chin. Phys. B 22 064201

    [3]

    Xu Y G, Zhang D Y, Cai J, Yuan L, Zhang W Q 2012 J. Mater. Sci. Technol. 28 34

    [4]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 物理学报 54 3878]

    [5]

    Wang J, Li H F, Huang Y H, Yu H B, Zhang Y 2010 Acta Phys. Sin. 59 1946 (in Chinese) [王建, 李会峰, 黄运华, 余海波, 张跃 2010 物理学报 59 1946]

    [6]

    Roberts J A, Imholt T, Ye Z, Dyke C A, Price D W, Tour J M 2004 J. Appl. Phys. 95 4352

    [7]

    Fan Z J, Luo G H, Zhang Z F 2006 Mater. Sci. Eng. B 132 85

    [8]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [9]

    Sun H G, Zhou Z X, Qin R H, Yuan C X, Zhang H F, Lu Y 2007 J. Harbin Inst. Technol. 39 474 (in Chinese) [孙洪国, 周忠祥, 秦汝虎, 袁承勋, 张海丰, 卢颖 2007 哈尔滨工业大学学报 39 474]

    [10]

    Hua S C, Wang H G, Wang L Y, Liu G, Zhao R X, Yao J X 2009 Acta Phys. Sin. 58 6534 (in Chinese) [华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋 2009 物理学报 58 6534]

    [11]

    Zhu H, Lin H, Guo H F, Yu L F 2007 Mater. Sci. Eng. B 138 101

    [12]

    Wang Z P, Zhang Z H, Qin S M, Wang L H, Wang X X 2008 Mater. Des. 29 1777

    [13]

    Peng Z H, Peng J C, Peng Y F, Wang J Y 2008 Chin. Sci. Bull. 52 3497

    [14]

    Li H, Yin W Y, Banerjee K, Mao T F 2008 IEEE Trans. Electron Dev. 55 1328

    [15]

    Zhang K L, Tian B, Zhu X S, Wang F, Wei J 2012 Nanoscale Res. Lett. 7 138

    [16]

    Han G Z, Chen M D, Guo P S, Li S X 2007 South China Univ. Technol. 35 52 (in Chinese) [韩光泽, 陈明东, 郭平生, 李绍新 2007 华南理工大学学报 35 52]

    [17]

    Prasad A, Prasad K 2007 Physica B 396 132

    [18]

    Peng Z H 2010 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [彭志华 2010 博士学位论文 (长沙: 湖南大学)]

    [19]

    Yellampalli S 2011 Carbon Nanotubes Synthesis Characterization Applications (Croatia: InTech Press) pp265–278

  • [1]

    Pan R Q 2011 Chin. Phys. Lett. 28 066104

    [2]

    Moradi A 2013 Chin. Phys. B 22 064201

    [3]

    Xu Y G, Zhang D Y, Cai J, Yuan L, Zhang W Q 2012 J. Mater. Sci. Technol. 28 34

    [4]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 物理学报 54 3878]

    [5]

    Wang J, Li H F, Huang Y H, Yu H B, Zhang Y 2010 Acta Phys. Sin. 59 1946 (in Chinese) [王建, 李会峰, 黄运华, 余海波, 张跃 2010 物理学报 59 1946]

    [6]

    Roberts J A, Imholt T, Ye Z, Dyke C A, Price D W, Tour J M 2004 J. Appl. Phys. 95 4352

    [7]

    Fan Z J, Luo G H, Zhang Z F 2006 Mater. Sci. Eng. B 132 85

    [8]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [9]

    Sun H G, Zhou Z X, Qin R H, Yuan C X, Zhang H F, Lu Y 2007 J. Harbin Inst. Technol. 39 474 (in Chinese) [孙洪国, 周忠祥, 秦汝虎, 袁承勋, 张海丰, 卢颖 2007 哈尔滨工业大学学报 39 474]

    [10]

    Hua S C, Wang H G, Wang L Y, Liu G, Zhao R X, Yao J X 2009 Acta Phys. Sin. 58 6534 (in Chinese) [华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋 2009 物理学报 58 6534]

    [11]

    Zhu H, Lin H, Guo H F, Yu L F 2007 Mater. Sci. Eng. B 138 101

    [12]

    Wang Z P, Zhang Z H, Qin S M, Wang L H, Wang X X 2008 Mater. Des. 29 1777

    [13]

    Peng Z H, Peng J C, Peng Y F, Wang J Y 2008 Chin. Sci. Bull. 52 3497

    [14]

    Li H, Yin W Y, Banerjee K, Mao T F 2008 IEEE Trans. Electron Dev. 55 1328

    [15]

    Zhang K L, Tian B, Zhu X S, Wang F, Wei J 2012 Nanoscale Res. Lett. 7 138

    [16]

    Han G Z, Chen M D, Guo P S, Li S X 2007 South China Univ. Technol. 35 52 (in Chinese) [韩光泽, 陈明东, 郭平生, 李绍新 2007 华南理工大学学报 35 52]

    [17]

    Prasad A, Prasad K 2007 Physica B 396 132

    [18]

    Peng Z H 2010 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [彭志华 2010 博士学位论文 (长沙: 湖南大学)]

    [19]

    Yellampalli S 2011 Carbon Nanotubes Synthesis Characterization Applications (Croatia: InTech Press) pp265–278

计量
  • 文章访问数:  3933
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-20
  • 修回日期:  2013-11-29
  • 刊出日期:  2014-03-05

碳纳米管复合吸波涂层微波吸收性能的模拟计算

  • 1. 广东工业大学材料与能源学院, 广州 510006;
  • 2. 华南理工大学大学城校区物理教学实验中心, 广州 510006
    基金项目: 广东省科技计划(批准号:2009B090300017)和广东省国际合作项目(批准号:2011B050300017)资助的课题.

摘要: 如何利用碳纳米管复合吸波涂层的参数进行吸波性能优化是电磁屏蔽研究的热点之一. 涂层参数对吸波性能影响的研究主要停留在实验探索阶段,而碳纳米管的结构参数对吸波性能影响的研究鲜有报道. 因此,从微观结构层次研究涂层参数对吸波性能的影响有重要意义. 基于多壁碳纳米管的等效电路,利用碳纳米管结构参数与等效电路各元件参数的关系,研究了碳纳米管损耗微波的机理,建立了碳纳米管结构参数与微波反射率的关系式. 根据此关系式,利用Matlab软件模拟计算了碳纳米管管长、管径、涂层中碳纳米管的含量以及涂层厚度对微波反射率的影响. 模拟计算结果表明:涂层的微波反射率随碳纳米管含量变化的模拟曲线与实验结果符合;碳纳米管含量和厚度是影响吸收峰位置和吸收强度的重要参量,而碳纳米管直径和长度是主要影响吸收峰强度的参量.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回