搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薛定谔扰动耦合系统孤波的行波近似解法

许永红 韩祥临 石兰芳 莫嘉琪

引用本文:
Citation:

薛定谔扰动耦合系统孤波的行波近似解法

许永红, 韩祥临, 石兰芳, 莫嘉琪

The traveling wave approximation method for solving solitary wave in Schrödinger disturbed coupled system

Xu Yong-Hong, Han Xiang-Lin, Shi Lan-Fang, Mo Jia-Qi
PDF
导出引用
  • 研究了一类薛定谔非线性耦合系统. 利用精确解与近似解相关联的特殊技巧,首先讨论了对应的无扰动耦合系统,利用投射法得到了精确的孤波解. 再利用泛函映射方法得到了薛定谔非线性扰动耦合系统的行波近似解.
    A class of the Schrödinger nonlinear disturbed coupled system is studied, using the specific technique to relate the exact and approximate solutions. Firstly, the corresponding non-disturbed coupled system is considered. The exact solitary wave solution is obtained by using the projection method. Then, the traveling wave approximation solution to the Schrödinger disturbed coupled system is found by using a functional mapping method.
    • 基金项目: 国家自然科学基金(批准号:11202106)、安徽高校省级自然科学研究项目(批准号:KJ2013B003)、浙江省自然科学基金(批准号:LY13A010005)和江苏省自然科学基金项目(批准号:13KJB170016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202106), the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2013B003), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13A010005), and the Natural Sciences Foundation from the Universities of Jiangsu Province, China (Grant No. 13KJB170016).
    [1]

    Parkes E J, Duffy B R, Abbott P C 2008 Chaos Solitons Fractals 38 154

    [2]

    Sirendaoreji J S 2003 Phys. Lett. A 309 387

    [3]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [4]

    Pan L X, Zhuo W M, Yan J R 2005 Acta. Phys. Sin. 54 1 (in Chinese) [潘留仙, 左伟明, 颜家壬 2005 物理学报 54 1]

    [5]

    Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta. Phys. Sin. 50 606 (in Chinese) [封国林, 戴兴刚, 王爱慧, 丑纪范 2001 物理学报 50 606]

    [6]

    Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press Co)

    [7]

    He J H, Wu X H 2006 Chaos Solitions & Fractals 29 108

    [8]

    Ni W M, Wei J C 2006 J. Differ. Equations 221 158

    [9]

    Bartier J P 2006 Asymptotic Anal. 46 325

    [10]

    Libre J, da Silva P R, Teixeira M A 2002 J. Dyn. Differ. Equations 19 309

    [11]

    Guarguaglini F R, Natalini R 2007 Commun. Partial Differ. Equations 32 163

    [12]

    Xu Y H, Wen Z H, Mo J Q 2011 Acta. Phys. Sin. 60 050205 (in Chinese) [许永红, 温朝晖, 莫嘉琪 2011 物理学报 60 050205]

    [13]

    Xu Y H, Yao J S, Mo J Q 2012 Acta. Phys. Sin. 61 020202 (in Chinese) [许永红, 姚静荪, 莫嘉琪 2012 物理学报 61 020202]

    [14]

    Han X L 2004 Acta Phys. Sin. 53 4061 (in Chinese) [韩祥临 2004 物理学报 53 4061]

    [15]

    Han X L, Zhao Z J, Cheng R J, Mo J Q 2013 Acta. Phys. Sin. 62 110202 (in Chinese) [韩祥临, 赵振江, 程荣军, 莫嘉琪 2013 物理学报 62 110202]

    [16]

    Shi L F, Mo J Q 2013 Acta. Phys. Sin. 62 040203 (in Chinese) [石兰芳, 莫嘉琪 2013 物理学报 62 040203]

    [17]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta. Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]

    [18]

    Shi L F, Ouyang C, Chen L H, Mo J Q 2012 cta. Phys. Sin. 61 050203 (in Chinese) [石兰芳, 欧阳成, 陈丽华, 莫嘉琪 2012 物理学报 61 050203]

    [19]

    Mo J Q 1989 Science in China, Ser A 32 1306

    [20]

    Mo J Q 2009 Science in China, Ser G 39 568

    [21]

    Jmo J Q, Chen X F 2010 Acta. Phys. Sin. 50 1403 (in Chinese) [莫嘉琪, 陈贤峰 2010 物理学报 50 1403]

    [22]

    Mo J Q, Lin S R 2009 Chin. Phys. B 18 3628

    [23]

    Mo J Q 2011 Commun. Theor. Phys. 55 387

    [24]

    Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203

    [25]

    Ma S H, Fang J P 2006 Acta. Phys. Sin. 55 5611 (in Chinese) [马松华, 方建平 2006 物理学报 65 5611]

    [26]

    Li B Q, Ma Y L, Xu M P, Li Y 2011 Acta. Phys. Sin. 60 060203 (in Chinese) [李帮庆, 马玉兰, 徐美萍, 李阳 2011 物理学报 60 060203]

    [27]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)

    [28]

    de Jager E M, Jiang Furu 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing)

  • [1]

    Parkes E J, Duffy B R, Abbott P C 2008 Chaos Solitons Fractals 38 154

    [2]

    Sirendaoreji J S 2003 Phys. Lett. A 309 387

    [3]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [4]

    Pan L X, Zhuo W M, Yan J R 2005 Acta. Phys. Sin. 54 1 (in Chinese) [潘留仙, 左伟明, 颜家壬 2005 物理学报 54 1]

    [5]

    Feng G L, Dai X G, Wang A H, Chou J F 2001 Acta. Phys. Sin. 50 606 (in Chinese) [封国林, 戴兴刚, 王爱慧, 丑纪范 2001 物理学报 50 606]

    [6]

    Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York: CRC Press Co)

    [7]

    He J H, Wu X H 2006 Chaos Solitions & Fractals 29 108

    [8]

    Ni W M, Wei J C 2006 J. Differ. Equations 221 158

    [9]

    Bartier J P 2006 Asymptotic Anal. 46 325

    [10]

    Libre J, da Silva P R, Teixeira M A 2002 J. Dyn. Differ. Equations 19 309

    [11]

    Guarguaglini F R, Natalini R 2007 Commun. Partial Differ. Equations 32 163

    [12]

    Xu Y H, Wen Z H, Mo J Q 2011 Acta. Phys. Sin. 60 050205 (in Chinese) [许永红, 温朝晖, 莫嘉琪 2011 物理学报 60 050205]

    [13]

    Xu Y H, Yao J S, Mo J Q 2012 Acta. Phys. Sin. 61 020202 (in Chinese) [许永红, 姚静荪, 莫嘉琪 2012 物理学报 61 020202]

    [14]

    Han X L 2004 Acta Phys. Sin. 53 4061 (in Chinese) [韩祥临 2004 物理学报 53 4061]

    [15]

    Han X L, Zhao Z J, Cheng R J, Mo J Q 2013 Acta. Phys. Sin. 62 110202 (in Chinese) [韩祥临, 赵振江, 程荣军, 莫嘉琪 2013 物理学报 62 110202]

    [16]

    Shi L F, Mo J Q 2013 Acta. Phys. Sin. 62 040203 (in Chinese) [石兰芳, 莫嘉琪 2013 物理学报 62 040203]

    [17]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta. Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]

    [18]

    Shi L F, Ouyang C, Chen L H, Mo J Q 2012 cta. Phys. Sin. 61 050203 (in Chinese) [石兰芳, 欧阳成, 陈丽华, 莫嘉琪 2012 物理学报 61 050203]

    [19]

    Mo J Q 1989 Science in China, Ser A 32 1306

    [20]

    Mo J Q 2009 Science in China, Ser G 39 568

    [21]

    Jmo J Q, Chen X F 2010 Acta. Phys. Sin. 50 1403 (in Chinese) [莫嘉琪, 陈贤峰 2010 物理学报 50 1403]

    [22]

    Mo J Q, Lin S R 2009 Chin. Phys. B 18 3628

    [23]

    Mo J Q 2011 Commun. Theor. Phys. 55 387

    [24]

    Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203

    [25]

    Ma S H, Fang J P 2006 Acta. Phys. Sin. 55 5611 (in Chinese) [马松华, 方建平 2006 物理学报 65 5611]

    [26]

    Li B Q, Ma Y L, Xu M P, Li Y 2011 Acta. Phys. Sin. 60 060203 (in Chinese) [李帮庆, 马玉兰, 徐美萍, 李阳 2011 物理学报 60 060203]

    [27]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)

    [28]

    de Jager E M, Jiang Furu 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing)

  • [1] 韩祥临, 林万涛, 许永红, 莫嘉琪. 广义Duffing扰动振子随机共振机理的渐近解. 物理学报, 2014, 63(17): 170204. doi: 10.7498/aps.63.170204
    [2] 汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解. 物理学报, 2014, 63(11): 110204. doi: 10.7498/aps.63.110204
    [3] 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62(6): 060201. doi: 10.7498/aps.62.060201
    [4] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [5] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法. 物理学报, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [6] 武利猛, 倪明康. 奇异摄动最优控制问题中的内部层解. 物理学报, 2012, 61(8): 080203. doi: 10.7498/aps.61.080203
    [7] 陈琼, 杨先清, 赵新印, 王振辉, 赵跃民. 周期型二元颗粒链中孤波传播的二体碰撞近似分析. 物理学报, 2012, 61(4): 044501. doi: 10.7498/aps.61.044501
    [8] 石兰芳, 欧阳成, 莫嘉琪. 一类海-气耦合振子模型行波解的渐近解法. 物理学报, 2012, 61(12): 120201. doi: 10.7498/aps.61.120201
    [9] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解. 物理学报, 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [10] 许永红, 姚静荪, 莫嘉琪. (3+1)维Burgers扰动系统孤波的解法. 物理学报, 2012, 61(2): 020202. doi: 10.7498/aps.61.020202
    [11] 徐惠, 陈丽华, 莫嘉琪. 一类奇摄动薄板弯曲问题的匹配渐近解. 物理学报, 2011, 60(10): 100201. doi: 10.7498/aps.60.100201
    [12] 石兰芳, 周先春, 莫嘉琪. 扰动Nizhnik-Novikov-Veselov系统分形孤子渐近解. 物理学报, 2011, 60(11): 110205. doi: 10.7498/aps.60.110205
    [13] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [14] 胡先权, 崔立鹏, 罗光, 马燕. 幂函数叠加势的径向薛定谔方程的解析解. 物理学报, 2009, 58(4): 2168-2173. doi: 10.7498/aps.58.2168
    [15] 胡先权, 许 杰, 马 勇, 殷 霖. 高次正幂与逆幂势函数的叠加的径向薛定谔方程的解析解. 物理学报, 2007, 56(9): 5060-5065. doi: 10.7498/aps.56.5060
    [16] 吴云岗, 陶明德. 粘性流体中船行波的完整速度场. 物理学报, 2005, 54(10): 4496-4500. doi: 10.7498/aps.54.4496
    [17] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [18] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法. 物理学报, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [19] 李志斌, 姚若侠. 非线性耦合微分方程组的精确解析解. 物理学报, 2001, 50(11): 2062-2067. doi: 10.7498/aps.50.2062
    [20] 李志斌, 潘素起. 广义五阶KdV方程的孤波解与孤子解. 物理学报, 2001, 50(3): 402-405. doi: 10.7498/aps.50.402
计量
  • 文章访问数:  3099
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-16
  • 修回日期:  2014-01-09
  • 刊出日期:  2014-05-05

薛定谔扰动耦合系统孤波的行波近似解法

  • 1. 蚌埠学院数理系, 蚌埠 233030;
  • 2. 湖州师范学院, 湖州 313000;
  • 3. 南京信息工程大学数学与统计学院, 南京 210044;
  • 4. 安徽师范大学数学系, 芜湖 241003
    基金项目: 国家自然科学基金(批准号:11202106)、安徽高校省级自然科学研究项目(批准号:KJ2013B003)、浙江省自然科学基金(批准号:LY13A010005)和江苏省自然科学基金项目(批准号:13KJB170016)资助的课题.

摘要: 研究了一类薛定谔非线性耦合系统. 利用精确解与近似解相关联的特殊技巧,首先讨论了对应的无扰动耦合系统,利用投射法得到了精确的孤波解. 再利用泛函映射方法得到了薛定谔非线性扰动耦合系统的行波近似解.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回