搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种简化维里型状态方程预测高温甲烷PVT关系

韩勇 龙新平 郭向利

引用本文:
Citation:

一种简化维里型状态方程预测高温甲烷PVT关系

韩勇, 龙新平, 郭向利

Prediction of methane PVT relations at high temperatures by a simplified virial equation of state

Han Yong, Long Xin-Ping, Guo Xiang-Li
PDF
导出引用
  • 为满足描述爆轰环境下高温气体高温、中高压状态的需求,本文提出了一种基于Lennard-Jones(LJ)势能函数的简化维里型状态方程Han-Long(HL). 应用HL状态方程计算了甲烷1000 K 以上112组理论和实验数据,计算所得体积平均绝对偏差约为1%,最大误差为3.28%,远低于DMW状态方程和BS状态方程的计算偏差. 采用HL状态方程计算了甲烷冲击试验的热力学数据,计算所得体积偏差均小于3%. 结果表明,HL状态方程能够很好的描述高温甲烷的热力学状态.
    In order to meet the demand of describing the supercritical gas under high temperature and medium-high pressure conditions, such as in detonation circumstance, a simplified virial equation of state (EOS), named Han-Long (HL), is presented, which is based on Lennard-Jones potential function. One hundred and twelve sets of theoretical data for methane above 1000 K are calculated using HL EOS. We obtain that the volume average absolute deviation (AAD) is about 1% and the maximum error is 3.28%; this error is far lower than the calculation deviation of DMW (Duan-Moller-Weare) EOS and BS (Belonoshko-Saxena) EOS. The shockwave data of methane is also calculated by HL EOS and the AAD are less than 3%. Results show that HL EOS can well describe the thermodynamic state of CH4 at high temperatures.
    • 基金项目: 国家自然科学基金(批准号:11372291)和科技创新基金(批准号:KJCX-201202)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372291), and the Innovation Foundation of Institute of Chemical Materials, China ( Grant No. KJCX-201202).
    [1]

    Han X H, Chen G M, Wang Q, Cui X L 2005 Natural Gas Chemical Industry 30 52 (in Chinese) [韩晓红, 陈光明, 王勤, 崔晓龙 2005 天然气化工 30 52]

    [2]
    [3]
    [4]

    Redlich O, Kwong N S 1949 Chem. Rev. 44 233

    [5]

    Starling K E, Han M S 1972 Hydrocarbon Processing 51 129

    [6]
    [7]
    [8]

    Martin J J, Hou Y C 1955 AIChE J. 1 142

    [9]
    [10]

    Peng D Y, Robinson D B 1976 Ind. Eng. Chem. Fundam. 15 59

    [11]
    [12]

    Li M, Chen C L, Sun J X, Tian R G, Xiao J R 2009 Chin. Phys. B 18 3795

    [13]
    [14]

    Kerrick D M, Jacobs G K 1981 Am. J. Sci. 281 735

    [15]

    Duan Z H, Muller N, Weare J H 1992 Geochimica et Cosmochimica Acta 56 3839

    [16]
    [17]

    Zhang C, Duan Z H, Zhang Z G 2007 Geochimica et Cosmochimica Acta 71 2036

    [18]
    [19]
    [20]

    Belonoshko A, Saxena S K 1991 Geochimica et Cosmochimica Acta 55 3191

    [21]
    [22]

    Galibin N S 2011 High Temperature 49 199

    [23]

    Mader C L 2008 Numerical modeling of explosives and propellants (New York: CRC Press) p453

    [24]
    [25]

    Wu X, Long X P, He B, Jiang X H 2008 Science in China (Series B: Chemistry) 38 1129 (in Chinese) [吴雄, 龙新平, 何碧, 蒋小华 2008 中国科学 38 1129]

    [26]
    [27]

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press) p323 (in Chinese) [孙承纬, 卫玉章, 周之奎2000应用爆轰物理(北京: 国防工业出版社)第323页]

    [28]
    [29]

    Marvin B 1986 J. Chem. Phys. 84 535

    [30]
    [31]

    Zhao Y H, Liu H F, Zhang G M, Zhang G C 2011 Acta Phys. Sin. 60 123401 (in Chinese) [赵艳红, 刘海风, 张弓木, 张广财 2011 物理学报 60 123401]

    [32]
    [33]
    [34]

    Zhao Y H, Liu H F, Zhang Q L 2012 Acta Phys. Sin. 61 230509 (in Chinese) [赵艳红, 刘海风, 张其黎 2012 物理学报 61 230509]

    [35]
    [36]

    Hu J W, Yu Y X 2009 Chin. Phys. Lett. 26 086404

    [37]

    Benjiamin K M, Schultz A J, Kofke D A 2009 J. Phys. Chem. B 113 7810

    [38]
    [39]

    Benjamin J, Robert H, Eckard B, Eckhard V 2011 J. Chem. Phys. 135 084308

    [40]
    [41]
    [42]

    Khasare S B 2011 Chin. Phys. B 20 085101

    [43]
    [44]

    Khasare S B 2012 Chin. Phys. B 21 045102

    [45]

    Galashev A Y 2013 Chin. Phys. B 22 123602

    [46]
    [47]
    [48]

    Hirschfelder J O, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (Wiley, New York Press) p34

    [49]
    [50]

    Han Y, Long X P, Huang Y M, Jiang Z H 2009 Chinese Journal of Energetic Materials 17 547 (in Chinese) [韩勇, 龙新平, 黄毅民, 蒋治海 2009 含能材料 17 547]

    [51]
    [52]

    Barker J A, Leonard P J, Pompe A 1966 J. Chem. Phys. 44 4206

    [53]

    Hu S M, Li C F 1993 Computers and Applied Chemistry 10 115 (in Chinese) [胡绍鸣, 李辰芳 1993 计算机与应用化学 10 115]

    [54]
    [55]

    Docherty H, Galindo A, Vega C, Sanz E 2006 J. Chem. Phys. 125 074510

    [56]
    [57]

    Shmulovich K I, Tereschenko E N, Kalinichev A G 1982 Geokhimiya 11 1598

    [58]
    [59]

    Jorgensen W L, Madura J K, Swenson C J 1984 J. Am. Chem. Soc. 106 6638

  • [1]

    Han X H, Chen G M, Wang Q, Cui X L 2005 Natural Gas Chemical Industry 30 52 (in Chinese) [韩晓红, 陈光明, 王勤, 崔晓龙 2005 天然气化工 30 52]

    [2]
    [3]
    [4]

    Redlich O, Kwong N S 1949 Chem. Rev. 44 233

    [5]

    Starling K E, Han M S 1972 Hydrocarbon Processing 51 129

    [6]
    [7]
    [8]

    Martin J J, Hou Y C 1955 AIChE J. 1 142

    [9]
    [10]

    Peng D Y, Robinson D B 1976 Ind. Eng. Chem. Fundam. 15 59

    [11]
    [12]

    Li M, Chen C L, Sun J X, Tian R G, Xiao J R 2009 Chin. Phys. B 18 3795

    [13]
    [14]

    Kerrick D M, Jacobs G K 1981 Am. J. Sci. 281 735

    [15]

    Duan Z H, Muller N, Weare J H 1992 Geochimica et Cosmochimica Acta 56 3839

    [16]
    [17]

    Zhang C, Duan Z H, Zhang Z G 2007 Geochimica et Cosmochimica Acta 71 2036

    [18]
    [19]
    [20]

    Belonoshko A, Saxena S K 1991 Geochimica et Cosmochimica Acta 55 3191

    [21]
    [22]

    Galibin N S 2011 High Temperature 49 199

    [23]

    Mader C L 2008 Numerical modeling of explosives and propellants (New York: CRC Press) p453

    [24]
    [25]

    Wu X, Long X P, He B, Jiang X H 2008 Science in China (Series B: Chemistry) 38 1129 (in Chinese) [吴雄, 龙新平, 何碧, 蒋小华 2008 中国科学 38 1129]

    [26]
    [27]

    Sun C W, Wei Y Z, Zhou Z K 2000 Applied Detonation Physics (Beijing: National Defense Industry Press) p323 (in Chinese) [孙承纬, 卫玉章, 周之奎2000应用爆轰物理(北京: 国防工业出版社)第323页]

    [28]
    [29]

    Marvin B 1986 J. Chem. Phys. 84 535

    [30]
    [31]

    Zhao Y H, Liu H F, Zhang G M, Zhang G C 2011 Acta Phys. Sin. 60 123401 (in Chinese) [赵艳红, 刘海风, 张弓木, 张广财 2011 物理学报 60 123401]

    [32]
    [33]
    [34]

    Zhao Y H, Liu H F, Zhang Q L 2012 Acta Phys. Sin. 61 230509 (in Chinese) [赵艳红, 刘海风, 张其黎 2012 物理学报 61 230509]

    [35]
    [36]

    Hu J W, Yu Y X 2009 Chin. Phys. Lett. 26 086404

    [37]

    Benjiamin K M, Schultz A J, Kofke D A 2009 J. Phys. Chem. B 113 7810

    [38]
    [39]

    Benjamin J, Robert H, Eckard B, Eckhard V 2011 J. Chem. Phys. 135 084308

    [40]
    [41]
    [42]

    Khasare S B 2011 Chin. Phys. B 20 085101

    [43]
    [44]

    Khasare S B 2012 Chin. Phys. B 21 045102

    [45]

    Galashev A Y 2013 Chin. Phys. B 22 123602

    [46]
    [47]
    [48]

    Hirschfelder J O, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (Wiley, New York Press) p34

    [49]
    [50]

    Han Y, Long X P, Huang Y M, Jiang Z H 2009 Chinese Journal of Energetic Materials 17 547 (in Chinese) [韩勇, 龙新平, 黄毅民, 蒋治海 2009 含能材料 17 547]

    [51]
    [52]

    Barker J A, Leonard P J, Pompe A 1966 J. Chem. Phys. 44 4206

    [53]

    Hu S M, Li C F 1993 Computers and Applied Chemistry 10 115 (in Chinese) [胡绍鸣, 李辰芳 1993 计算机与应用化学 10 115]

    [54]
    [55]

    Docherty H, Galindo A, Vega C, Sanz E 2006 J. Chem. Phys. 125 074510

    [56]
    [57]

    Shmulovich K I, Tereschenko E N, Kalinichev A G 1982 Geokhimiya 11 1598

    [58]
    [59]

    Jorgensen W L, Madura J K, Swenson C J 1984 J. Am. Chem. Soc. 106 6638

  • [1] 王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青. 温度弱敏感光纤高温压力传感器. 物理学报, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [3] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响. 物理学报, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [4] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟. 物理学报, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [5] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [6] 舒桦, 涂昱淳, 王寯越, 贾果, 叶君建, 邓文, 束海云, 杨艳平, 杜雪艳, 谢志勇, 贺芝宇, 方智恒, 华能, 黄秀光, 裴文兵, 傅思祖. 静-动加载相结合的材料状态方程实验平台的研制. 物理学报, 2018, 67(6): 064101. doi: 10.7498/aps.67.20172502
    [7] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质. 物理学报, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [8] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究. 物理学报, 2015, 64(9): 094702. doi: 10.7498/aps.64.094702
    [9] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量. 物理学报, 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [10] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [11] 李风姣, 贺端威, 柳雷, 张毅, 敬秋民, 刘盛刚, 陈海花, 毕延, 徐济安. -Ce中的高压纵波声子模软化和状态方程描述. 物理学报, 2012, 61(11): 116401. doi: 10.7498/aps.61.116401
    [12] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究. 物理学报, 2012, 61(2): 026701. doi: 10.7498/aps.61.026701
    [13] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程. 物理学报, 2011, 60(6): 060509. doi: 10.7498/aps.60.060509
    [14] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [15] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响. 物理学报, 2008, 57(6): 3397-3401. doi: 10.7498/aps.57.3397
    [16] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [17] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [18] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程. 物理学报, 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [19] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响. 物理学报, 2006, 55(2): 764-769. doi: 10.7498/aps.55.764
    [20] 黄秀光, 罗平庆, 傅思祖, 顾援, 马民勋, 吴江, 何钜华. 一种激光驱动高压状态方程绝对测量方法的探索. 物理学报, 2002, 51(2): 337-341. doi: 10.7498/aps.51.337
计量
  • 文章访问数:  5625
  • PDF下载量:  791
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-26
  • 修回日期:  2014-04-14
  • 刊出日期:  2014-08-05

/

返回文章
返回