搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

94 GHz TE6,2模式Denisov辐射器的研究

张天钟 喻胜 牛新建 李宏福 李浩

引用本文:
Citation:

94 GHz TE6,2模式Denisov辐射器的研究

张天钟, 喻胜, 牛新建, 李宏福, 李浩

Analysis of a 94 GHz, TE6,2 Denisov laucher

Zhang Tian-Zhong, Yu Sheng, Niu Xin-Jian, Li Hong-Fu, Li Hao
PDF
导出引用
  • 准光辐射器是回旋管内置准光模式变换器的重要组成部分. 采用几何光学理论分析了圆波导中高阶旋转模式电磁波的准光传输特性,分析了螺旋非规则光滑圆波导中电磁波的传输和模式耦合机理,推导任意扰动的圆波导内模式间的耦合波方程及其相关系数. 根据耦合波理论编制准光模式变换器的数值计算程序,分析了Denisov型辐射器内激励起的波导模式的功率分布规律和波导壁上的纵向磁场分布,以及辐射器螺旋切口的辐射场的分布和辐射波束的特征,并采用三维全波仿真软件进行对比模拟. 优化了工作频率为94 GHz,TE6,2模式的Denisov型辐射器,其输出功率效率高达98%;加工成实物并内置于回旋振荡内进行热测实验,在回旋管的输出窗处获得了高斯分布的烧斑图. 此结果表明测试结果与计算基本一致.
    The launcher is an important component of the gyrotron builded-in quasi optical convertor. The propagate characteristics of high order modes in volume waveguide are analyzed in this paper based on geometric optical theory. The waveguide coupling equations and the corresponding coupling coefficients of the modes in the perturbation waveguide are derived based on the mode coupling theory. The power distribution in the perturbation waveguide and the field on the wall are analyzed by the numerical calculation code which is written in MATLAB language. The 3D simulation software can be used to verity the numerical result. As an example, a Denisov launcher of 94 GHz, TE6,2 is designed, and the numerical simulation result shows that the conversion efficiency is more than 98%, The hot-test experimental results show that the profile of output field is well consistent with the numerical result.
    • 基金项目: 中央高校基本科研业务费(批准号:E022050205)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. E022050205).
    [1]

    Thumm M 2005 Infrar. Millim. Waves 26 483

    [2]

    Thumm M 2011 State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Karlsruhe: Kit Scientific Report) pp16-29

    [3]

    Ogawa I, Idehara T, Nagao K 2005 Conference Digest Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics Williamsburg, Virginia, September 19-23, 2005 p379

    [4]

    Jin J B, Piosczyk B, Thumm M, Rzesnicki T, Zhang S 2006 IEEE Trans. Plasma Sci. 34 1508

    [5]

    Xu S X, Wang B, Liu P K, Geng Z H 2010 The 11th International Vacuum Electronics Conference Monterey, California, April 24-26, 2010 p355

    [6]

    Ragini J, Kartikeyana M V, Thumm M 2009 The 34th International Conference on Infrared, Millimeter, and Terahertz Waves Busan, Korea, September 21-25, 2009 pp21-25

    [7]

    Thumm M, Yang X K, Arnold A, Guenter D, Georg M, Julius P, Dietmar W 2005 IEEE Trans. Electron Dev. 52 818

    [8]

    Rzesnicki T, Jin J, Piosczyk B, Thumm M, Michel G, Wagner D 2005 Conference Digest Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics Williamsburg, Virginia, September 19-23, 2005 pp519-520

    [9]

    Blank M, Kreischer M, Temkin K E 1994 Int. Electron Dev. p259

    [10]

    Wang H, Shen W Y, Geng Z H, Xu S X, Wang B, Du C H, Liu P K 2013 Acta Phys. Sin. 62 238401 (in Chinese) [王虎, 沈文渊, 耿志辉, 徐寿喜, 王斌, 杜朝海, 刘濮鲲 2013 物理学报 62 238401]

    [11]

    Jin J, Thumm M, Piosczyk B, Kern S, Flamm J, Rzesnicki T 2009 IEEE Trans. Microw. Theo. Techniq. 57 1661

    [12]

    Liu D W, Yuan X S, Yan Y 2009 Chin. Phys. B 18 3049

    [13]

    Chen X L, Zhao Q, Liu J W 2012 Acta Phys. Sin. 61 074104 (in Chinese) [陈旭霖, 赵青, 刘建卫 2012 物理学报 61 074104]

    [14]

    Lei C J, Yu S, Li H F 2012 Acta Phys. Sin. 61 180202 (in Chinese) [雷朝军, 喻胜, 李宏福 2012 物理学报 61 180202]

    [15]

    Xia M Z, Liu D G, Yan Y 2013 Acta Phys. Sin. 62 111301 (in Chinese) [夏蒙重, 刘大刚, 鄢扬 2013 物理学报 62 111301]

    [16]

    Du C H, Xue Q Z, Liu P K 2010 Chin. Phys B 19 048703

    [17]

    Niu X J, Li H F, Yu S, Xie Z L, Yang S W 2002 Acta Phys. Sin. 51 2291 (in Chinese) [牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文 2002 物理学报 51 2291]

    [18]

    Du C H, Liu P K, Xue Q Z 2010 Chin. Phys. B 19 048703

    [19]

    Zhang L, Fu X L, Lei M, Wang A T, Gu C, Rao R Z 2014 Chin. Phys. B 23 038101

    [20]

    Jin J B 2005 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [金践波 2005 博士学位论文 (成都: 西南交通大学)]

    [21]

    Bogdashov A A, Denisov G G 2004 Radiophys. Quantum Electron. 47 283

    [22]

    Doane J L 1985 Infrar. Millim. Waves 13 123

  • [1]

    Thumm M 2005 Infrar. Millim. Waves 26 483

    [2]

    Thumm M 2011 State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Karlsruhe: Kit Scientific Report) pp16-29

    [3]

    Ogawa I, Idehara T, Nagao K 2005 Conference Digest Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics Williamsburg, Virginia, September 19-23, 2005 p379

    [4]

    Jin J B, Piosczyk B, Thumm M, Rzesnicki T, Zhang S 2006 IEEE Trans. Plasma Sci. 34 1508

    [5]

    Xu S X, Wang B, Liu P K, Geng Z H 2010 The 11th International Vacuum Electronics Conference Monterey, California, April 24-26, 2010 p355

    [6]

    Ragini J, Kartikeyana M V, Thumm M 2009 The 34th International Conference on Infrared, Millimeter, and Terahertz Waves Busan, Korea, September 21-25, 2009 pp21-25

    [7]

    Thumm M, Yang X K, Arnold A, Guenter D, Georg M, Julius P, Dietmar W 2005 IEEE Trans. Electron Dev. 52 818

    [8]

    Rzesnicki T, Jin J, Piosczyk B, Thumm M, Michel G, Wagner D 2005 Conference Digest Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics Williamsburg, Virginia, September 19-23, 2005 pp519-520

    [9]

    Blank M, Kreischer M, Temkin K E 1994 Int. Electron Dev. p259

    [10]

    Wang H, Shen W Y, Geng Z H, Xu S X, Wang B, Du C H, Liu P K 2013 Acta Phys. Sin. 62 238401 (in Chinese) [王虎, 沈文渊, 耿志辉, 徐寿喜, 王斌, 杜朝海, 刘濮鲲 2013 物理学报 62 238401]

    [11]

    Jin J, Thumm M, Piosczyk B, Kern S, Flamm J, Rzesnicki T 2009 IEEE Trans. Microw. Theo. Techniq. 57 1661

    [12]

    Liu D W, Yuan X S, Yan Y 2009 Chin. Phys. B 18 3049

    [13]

    Chen X L, Zhao Q, Liu J W 2012 Acta Phys. Sin. 61 074104 (in Chinese) [陈旭霖, 赵青, 刘建卫 2012 物理学报 61 074104]

    [14]

    Lei C J, Yu S, Li H F 2012 Acta Phys. Sin. 61 180202 (in Chinese) [雷朝军, 喻胜, 李宏福 2012 物理学报 61 180202]

    [15]

    Xia M Z, Liu D G, Yan Y 2013 Acta Phys. Sin. 62 111301 (in Chinese) [夏蒙重, 刘大刚, 鄢扬 2013 物理学报 62 111301]

    [16]

    Du C H, Xue Q Z, Liu P K 2010 Chin. Phys B 19 048703

    [17]

    Niu X J, Li H F, Yu S, Xie Z L, Yang S W 2002 Acta Phys. Sin. 51 2291 (in Chinese) [牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文 2002 物理学报 51 2291]

    [18]

    Du C H, Liu P K, Xue Q Z 2010 Chin. Phys. B 19 048703

    [19]

    Zhang L, Fu X L, Lei M, Wang A T, Gu C, Rao R Z 2014 Chin. Phys. B 23 038101

    [20]

    Jin J B 2005 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [金践波 2005 博士学位论文 (成都: 西南交通大学)]

    [21]

    Bogdashov A A, Denisov G G 2004 Radiophys. Quantum Electron. 47 283

    [22]

    Doane J L 1985 Infrar. Millim. Waves 13 123

  • [1] 崔立红, 赵维宁, 颜昌翔. 高斯光束与谐振腔基模模式光路谐振匹配的分析与校准. 物理学报, 2015, 64(22): 224211. doi: 10.7498/aps.64.224211
    [2] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析. 物理学报, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [3] 徐红梅, 金永镐, 郭树旭. 电压控制不连续导电模式DC-DC变换器的熵特性研究. 物理学报, 2013, 62(24): 248401. doi: 10.7498/aps.62.248401
    [4] 王强, 周海京, 杨春, 李彪, 何晓阳. 过模波导器件的迭代设计方法. 物理学报, 2013, 62(11): 115204. doi: 10.7498/aps.62.115204
    [5] 徐刚, 谢平, 廖勇. X波段过模弯曲圆波导TM01-HE11模式变换器研究. 物理学报, 2013, 62(7): 078401. doi: 10.7498/aps.62.078401
    [6] 李冠林, 李春阳, 陈希有, 牟宪民. 电流模式SEPIC变换器倍周期分岔现象研究. 物理学报, 2012, 61(17): 170506. doi: 10.7498/aps.61.170506
    [7] 谢玲玲, 龚仁喜, 卓浩泽, 马献花. 电压模式控制不连续传导模式boost变换器切分岔研究. 物理学报, 2012, 61(5): 058401. doi: 10.7498/aps.61.058401
    [8] 兰峰, 杨梓强, 史宗君. 非均匀扰动结构TE0n模式变换器研究. 物理学报, 2012, 61(15): 155201. doi: 10.7498/aps.61.155201
    [9] 徐启远, 刘正堂, 李阳平, 武倩, 张淼. ZnS衬底表面亚波长增透结构的设计及制备. 物理学报, 2011, 60(1): 014103. doi: 10.7498/aps.60.014103
    [10] 刘建卫, 赵青, 李宏福. 94 GHz回旋管准光模式变换器设计. 物理学报, 2011, 60(10): 104201. doi: 10.7498/aps.60.104201
    [11] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析. 物理学报, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [12] 王斌, 杜朝海, 刘濮鲲, 耿志辉, 徐寿喜. W波段边廊模回旋管准光模式变换器的研究与设计. 物理学报, 2010, 59(4): 2512-2518. doi: 10.7498/aps.59.2512
    [13] 刘巧君, 杨林, 王劼予, 左浩毅, 罗时荣, 郑玉臣. 基于激光器输出模式的离轴激光雷达重叠因子计算及近场信号校正. 物理学报, 2009, 58(10): 7376-7381. doi: 10.7498/aps.58.7376
    [14] 王学梅, 张 波, 丘东元. 不连续导电模式DC-DC变换器的倍周期分岔机理研究. 物理学报, 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [15] 孙 旭, 赵 青, 李宏福. 宽带非均匀半径渐变TE0n-TE0(n+1)模式转换器的设计研究. 物理学报, 2008, 57(4): 2130-2135. doi: 10.7498/aps.57.2130
    [16] 卢伟国, 周雒维, 罗全明. 电压模式BUCK变换器输出延迟反馈混沌控制. 物理学报, 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [17] 付生辉, 宋国峰, 陈良惠. 大功率分布反馈激光器中光栅优化及试验. 物理学报, 2007, 56(3): 1613-1616. doi: 10.7498/aps.56.1613
    [18] 许 婕, 陈理想, 郑国梁, 王红成, 佘卫龙. 双折射晶体中旋光效应的耦合波理论. 物理学报, 2007, 56(8): 4615-4621. doi: 10.7498/aps.56.4615
    [19] 吴丹丹, 佘卫龙. 双轴晶体电光调制器的最优设计. 物理学报, 2005, 54(1): 134-138. doi: 10.7498/aps.54.134
    [20] 唐永林, 李大义, 陈建国, 康 俊. 对数型折射率饱和非线性介质中光孤子高斯型呼吸模式. 物理学报, 1999, 48(7): 1248-1253. doi: 10.7498/aps.48.1248
计量
  • 文章访问数:  2600
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 修回日期:  2014-03-12
  • 刊出日期:  2014-06-05

94 GHz TE6,2模式Denisov辐射器的研究

  • 1. 电子科技大学太赫兹科学技术研究中心, 成都 610054
    基金项目: 中央高校基本科研业务费(批准号:E022050205)资助的课题.

摘要: 准光辐射器是回旋管内置准光模式变换器的重要组成部分. 采用几何光学理论分析了圆波导中高阶旋转模式电磁波的准光传输特性,分析了螺旋非规则光滑圆波导中电磁波的传输和模式耦合机理,推导任意扰动的圆波导内模式间的耦合波方程及其相关系数. 根据耦合波理论编制准光模式变换器的数值计算程序,分析了Denisov型辐射器内激励起的波导模式的功率分布规律和波导壁上的纵向磁场分布,以及辐射器螺旋切口的辐射场的分布和辐射波束的特征,并采用三维全波仿真软件进行对比模拟. 优化了工作频率为94 GHz,TE6,2模式的Denisov型辐射器,其输出功率效率高达98%;加工成实物并内置于回旋振荡内进行热测实验,在回旋管的输出窗处获得了高斯分布的烧斑图. 此结果表明测试结果与计算基本一致.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回