搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子并行粒子群优化算法的分数阶混沌系统参数估计

黄宇 刘玉峰 彭志敏 丁艳军

引用本文:
Citation:

基于量子并行粒子群优化算法的分数阶混沌系统参数估计

黄宇, 刘玉峰, 彭志敏, 丁艳军

Research on particle swarm optimization algorithm with characteristic of quantum parallel and its application in parameter estimation for fractional-order chaotic systems

Huang Yu, Liu Yu-Feng, Peng Zhi-Min, Ding Yan-Jun
PDF
导出引用
  • 分数阶混沌系统参数估计的本质是多维参数优化问题, 其对于实现分数阶混沌控制与同步至关重要. 提出一种基于量子并行特性的粒子群优化新算法, 用于解决分数阶混沌的系统参数估计问题. 利用量子计算的并行特性, 设计出了一种新的量子编码, 使每代运算的可计算次数呈指数增加. 在此基础上, 构建了由量子当前旋转角、个体最优旋转角和全局最优旋转角共同组成的粒子演化方程, 以约束粒子在量子空间中的运动行为, 使算法的搜索能力得到了较大提高. 以分数阶Lorenz混沌系统和分数阶Chen混沌系统的参数估计为例, 进行了未知参数估计的数值仿真, 结果显示本算法具有良好的有效性、鲁棒性和通用性.
    Parameter estimation for fractional-order chaotic systems is a multi-dimensional optimization problem, which is one of the important issues in fractional-order chaotic control and synchronization. With the characteristic of quantum parallel, a new quantum parallel particle swarm optimization algorithm is proposed for solving the problem of parameter estimation in fractional-order chaotic systems. A new method of quantum coding is presented with quantum parallel characteristic which can make the calculation number of each generation increase exponentially. On the basis of this method, a particle evolution equation composed of quantum current rotation angle, individual optimal rotation angle, and global optimum rotation angle is proposed, which can restraint the behavior of particles in quantum space, and also can improve the search capability of the algorithm. Numerical simulations of the fractional-order Lorenz system and the fractional-order Chen system are conducted and the results demonstrate the effectiveness, robustness and versatility of the proposed algorithm.
    • 基金项目: 国家自然科学基金(批准号: 51206086, 51176085)和中央高校基本科研业务费专项资金(批准号: 12MS117)资助的课题.
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 51206086, 51176085), and the Fundamental Research Funds for the Central Universities (Grant No. 12MS117).
    [1]

    Sheikhan M, Shahnazi R, Garoucy S 2013 Neural Computing and Application 22 361

    [2]

    Gandomi A H, Yun G J, Yang X S, Talatahari S 2013 Communications in Nonlinear Science and Numerical Simulation 18 327

    [3]

    Yassi M, Yassi A, Yaghoobi M 2014 Iranian Conference on Intelligent Bam, Iran, February 4-6 2014 p1

    [4]

    Gao X 2007 Ph. Dissertation D (Xian: Xidian University)) (in Chinese) [高心2005 博士学位论文(西安: 电子科技大学)]

    [5]

    Ho W H, Chou J H, Guo C Y 2010 Nonlinear Dyn. 61 29

    [6]

    Yang K Q, Maginu K J, Nomura H 2009 International Journal of Computer Mathematics 86 2225

    [7]

    Chang, W D. 2007 Chaos Soliton. Fract. 32 1469

    [8]

    Parlitz U, Junge L 1996 Phys. Rev. E 54 6253

    [9]

    Wang L, Ye X, Ling P L 2011 Expert System with Applications 38 3238

    [10]

    Long W, Jiao J J 2012 Acta Phys. Sin. 61 110507 (in Chinese) [龙文, 焦建军 2012 物理学报 61 110507]

    [11]

    Lin J, Xu L 2013 Acta Phys. Sin. 62 030505 (in Chinese) [林剑, 许力 2013 物理学报 62 030505]

    [12]

    Wang L, He W P, Wan S Q, Liao J L, He T 2014 Acta Phys. Sin. 63 019203 (in Chinese) [王柳, 何文平, 万仕全, 廖乐健, 何涛 2014 物理学报 63 019203]

    [13]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [14]

    Li A P, Liu G R, Shen X Q 2013 Computer Engineering and Applications 49 4 (in Chinese) [李安平, 刘国荣, 沈细群 2013 计算机工程应用 49 4]

    [15]

    Nielsen M, Chuang I 2010 Quantum Computation and Quantum Information (London: Cambridge University Press) pp 61-75

    [16]

    Li S Y, Li P C 2007 Chinese Jounal of Quantum Electronics 24 569 (in Chinese) [李士勇, 李盼池 2007 量子电子学报 24 569]

    [17]

    Caponetto R 2010 Fractional order systems: modeling and control applications (World Scientific) pp 62-65

    [18]

    He Q, Wang L, Liu B 2007 Chaos Soliton. Fract. 34 645

    [19]

    Li C, Chen G 2004 Chaos Soliton. Fract. 22 549

  • [1]

    Sheikhan M, Shahnazi R, Garoucy S 2013 Neural Computing and Application 22 361

    [2]

    Gandomi A H, Yun G J, Yang X S, Talatahari S 2013 Communications in Nonlinear Science and Numerical Simulation 18 327

    [3]

    Yassi M, Yassi A, Yaghoobi M 2014 Iranian Conference on Intelligent Bam, Iran, February 4-6 2014 p1

    [4]

    Gao X 2007 Ph. Dissertation D (Xian: Xidian University)) (in Chinese) [高心2005 博士学位论文(西安: 电子科技大学)]

    [5]

    Ho W H, Chou J H, Guo C Y 2010 Nonlinear Dyn. 61 29

    [6]

    Yang K Q, Maginu K J, Nomura H 2009 International Journal of Computer Mathematics 86 2225

    [7]

    Chang, W D. 2007 Chaos Soliton. Fract. 32 1469

    [8]

    Parlitz U, Junge L 1996 Phys. Rev. E 54 6253

    [9]

    Wang L, Ye X, Ling P L 2011 Expert System with Applications 38 3238

    [10]

    Long W, Jiao J J 2012 Acta Phys. Sin. 61 110507 (in Chinese) [龙文, 焦建军 2012 物理学报 61 110507]

    [11]

    Lin J, Xu L 2013 Acta Phys. Sin. 62 030505 (in Chinese) [林剑, 许力 2013 物理学报 62 030505]

    [12]

    Wang L, He W P, Wan S Q, Liao J L, He T 2014 Acta Phys. Sin. 63 019203 (in Chinese) [王柳, 何文平, 万仕全, 廖乐健, 何涛 2014 物理学报 63 019203]

    [13]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [14]

    Li A P, Liu G R, Shen X Q 2013 Computer Engineering and Applications 49 4 (in Chinese) [李安平, 刘国荣, 沈细群 2013 计算机工程应用 49 4]

    [15]

    Nielsen M, Chuang I 2010 Quantum Computation and Quantum Information (London: Cambridge University Press) pp 61-75

    [16]

    Li S Y, Li P C 2007 Chinese Jounal of Quantum Electronics 24 569 (in Chinese) [李士勇, 李盼池 2007 量子电子学报 24 569]

    [17]

    Caponetto R 2010 Fractional order systems: modeling and control applications (World Scientific) pp 62-65

    [18]

    He Q, Wang L, Liu B 2007 Chaos Soliton. Fract. 34 645

    [19]

    Li C, Chen G 2004 Chaos Soliton. Fract. 22 549

  • [1] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [2] 谢宇, 赵春霞, 张浩峰, 颜雪军, 陈得宝. 基于混合交叉差分进化的相机空间操控系统参数优化. 物理学报, 2015, 64(2): 020701. doi: 10.7498/aps.64.020701
    [3] 范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题. 物理学报, 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [4] 张淑宁, 赵惠昌, 熊刚, 郭长勇. 基于粒子滤波的单通道正弦调频混合信号分离与参数估计. 物理学报, 2014, 63(15): 158401. doi: 10.7498/aps.63.158401
    [5] 王柳, 何文平, 万仕全, 廖乐健, 何涛. 混沌系统中参数估计的演化建模方法. 物理学报, 2014, 63(1): 019203. doi: 10.7498/aps.63.019203
    [6] 曹小群. 基于二阶离散变分方法的非线性映射参数估计. 物理学报, 2013, 62(8): 080506. doi: 10.7498/aps.62.080506
    [7] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [8] 陈帝伊, 柳烨, 马孝义. 基于径向基函数神经网络的混沌时间序列相空间重构双参数联合估计. 物理学报, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [9] 曹鹤飞, 张若洵. 基于单驱动变量分数阶混沌同步的参数调制数字通信及硬件实现. 物理学报, 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [10] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用. 物理学报, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [11] 龙文, 焦建军. 基于混合交叉进化算法的混沌系统参数估计 . 物理学报, 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [12] 胡建兵, 肖建, 赵灵冬. 阶次不等的分数阶混沌系统同步. 物理学报, 2011, 60(11): 110515. doi: 10.7498/aps.60.110515
    [13] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [14] 曹小群, 张卫民, 宋君强, 朱小谦, 王舒畅. 海-气振子系统中未知参数的MCMC方法识别. 物理学报, 2009, 58(9): 6050-6057. doi: 10.7498/aps.58.6050
    [15] 王钧炎, 黄德先. 基于混合差分进化算法的混沌系统参数估计. 物理学报, 2008, 57(5): 2755-2760. doi: 10.7498/aps.57.2755
    [16] 陈 争, 曾以成, 付志坚. 混沌背景中信号参数估计的新方法. 物理学报, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
    [17] 李丽香, 彭海朋, 杨义先, 王向东. 基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计. 物理学报, 2007, 56(1): 51-55. doi: 10.7498/aps.56.51
    [18] 贾飞蕾, 徐 伟, 都 林. 参数未知的不同阶数混沌系统广义同步及参数估计. 物理学报, 2007, 56(10): 5640-5647. doi: 10.7498/aps.56.5640
    [19] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [20] 戴栋, 马西奎, 李富才, 尤勇. 一种基于遗传算法的混沌系统参数估计方法. 物理学报, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
计量
  • 文章访问数:  3629
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-09-02
  • 刊出日期:  2015-02-05

基于量子并行粒子群优化算法的分数阶混沌系统参数估计

  • 1. 清华大学热能系, 电力系统与发电设备控制与仿真国家重点实验室, 北京 100084;
  • 2. 华北电力大学控制与计算机工程学院, 保定 071003
    基金项目: 国家自然科学基金(批准号: 51206086, 51176085)和中央高校基本科研业务费专项资金(批准号: 12MS117)资助的课题.

摘要: 分数阶混沌系统参数估计的本质是多维参数优化问题, 其对于实现分数阶混沌控制与同步至关重要. 提出一种基于量子并行特性的粒子群优化新算法, 用于解决分数阶混沌的系统参数估计问题. 利用量子计算的并行特性, 设计出了一种新的量子编码, 使每代运算的可计算次数呈指数增加. 在此基础上, 构建了由量子当前旋转角、个体最优旋转角和全局最优旋转角共同组成的粒子演化方程, 以约束粒子在量子空间中的运动行为, 使算法的搜索能力得到了较大提高. 以分数阶Lorenz混沌系统和分数阶Chen混沌系统的参数估计为例, 进行了未知参数估计的数值仿真, 结果显示本算法具有良好的有效性、鲁棒性和通用性.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回