搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究

万素磊 何利民 向俊尤 王志国 邢茹 张雪峰 鲁毅 赵建军

引用本文:
Citation:

钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究

万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军

Magnetic and transport properties of bilayered perovskite manganites (La0.8Eu0.2)4/3Sr5/3Mn2O7

Wan Su-Lei, He Li-Min, Xiang Jun-You, Wang Zhi-Guo, Xing Ru, Zhang Xue-Feng, Lu Yi, Zhao Jian-Jun
PDF
导出引用
  • 采用传统固相反应法制备钙钛矿型锰氧化物 (La0.8Eu0.2)4/3Sr5/3Mn2O7多晶样品, X-射线衍射分析表明, 样品(La0.8Eu0.2)4/3Sr5/3Mn2O7结构呈现良好的单相. 通过磁化强度随温度的变化曲线(M-T)、不同温度下磁化强度随磁场的变化曲线(M-H)和电子自旋共振谱发现: 在300 K以下, 随着温度的降低, 样品先后经历了二维短程铁磁有序转变 (TC2D ≈ 282 K)、三维长程铁磁有序转变(TC3D ≈ 259 K)、奈尔转变(TN ≈ 208K)和电荷有序转变(TCO ≈ 35 K); 样品 (La0.8Eu0.2)4/3Sr5/3Mn2O7在TN以下, 主要处于反铁磁态; 在TC3D达到370 K时, 样品处于铁磁-顺磁共存态, 在370 K以上时样品进入顺磁态. 此外, 分析电阻率随温度的变化曲线(ρ-T)得到: 样品在金属-绝缘转变温度(TP ≈ 80 K)附近出现最大磁电阻值, 其位置远离TC3D, 表现出非本征磁电阻现象, 其磁电阻值约为61%. 在TCO以下, 电阻率出现明显增长, 这是由于温度下降使原本在高温部分巡游的eg电子开始自发局域化增强所致. 通过对 (La0.8Eu0.2)4/3Sr5/3Mn2O7的ρ-T 曲线拟合, 发现样品在高温部分的导电方式基本遵循小极化子的导电方式.
    Samples of (La0.8Eu0.2)4/3Sr5/3Mn2O7 were prepared by solid state reaction method. X-ray diffraction patterns indicated that the sample shows no any asymmetry and no any trace of secondary phase. The magnetization curve as a function of temperature (M-T), the magnetization versus magnetic field (M-H) at different temperatures, and the electron spin resonance spectrum have been detected. The magnetization measurement reveals that with lowing temperature, all of the samples undergo a complex magnetic transition. They transform from the two-dimensional short-range ferromagnetic order at TC2D ≈ 282 K, and enter the three-dimensional long-range ferromagnetic state at TC3D ≈ 259 K. Then they step into the antiferromagnetic state at TN ≈ 208 K and enter electric charge temperature order at TCO ≈ 35 K. The antimagnetic phase is found in the sample (La0.8Eu0.2)4/3Sr5/3Mn2O7below TN. When TC3D=370 K, the paramagnetic phase and antimagnetic phase co-exist. When TC3D is above 370 K, only paramagnetic phase exists in the sample. Besides, through electrical resistivity versus temperature curve ρ-T, the sample shows the maximum magnetization electrical resistivity when metal-insulator transition temperature is reached TP ≈ 80 K, TP being far from TC3D. And the transition shows the phenomenon of intrinsic magnetization electrical resistance, MR ≈ 61%. The resistance begins to increase below TCO. Because of the lowing temperature, the itinerant electron eg becomes increasingly spontaneously localized. One can see from the fitted ρ-T curves that (La0.8Eu0.2)4/3Sr5/3Mn2O7 in high temperature range is in accordance with the small polaron mode range hopping conduction.
    • 基金项目: 国家自然科学基金(批准号:11164019)、内蒙古自治区科学基金(批准号:2011MS0108,2011MS0101)和内蒙古自治区高等学校科学研究基金(批准号:NJZZ11166,NJ10163,NJZY12202)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11164019), the Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2011MS0108, 2011MS0101), and the Science Research Fund of Institution of Higher Education of Inner Mongolia Autonomous Region, China (Grant Nos. NJZZ11166, NJ10163, NJZY12202).
    [1]

    Zhao J J, Xing R, Lu Y, Haosi B Y, Zhao M Y, Jin X, Zheng L, Ning W, Sun Y, Cheng Z H 2008 Chin. Phys. 17 2721

    [2]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [3]

    Zhao J J, Lu Y, Haosi B Y, Xing R, Yang R F, Li Q A, Sun Y, Cheng Z H 2008 Chin. Phys. 17 2717

    [4]

    Jonker G H 1956 Physica 22 707

    [5]

    Jonker G H, van Santen J H 1950 Physica 16 337

    [6]

    Searle C W, Wang S T 1969 Can. J. Phys. 47 2703

    [7]

    Ram R A M, Ganguly P, Rao C N R 1987 J. Sol. Stat. Chem. 70 82

    [8]

    Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698

    [9]

    Argyriou D N, Mitchell J F, Radaelli P G, Jorgensen J, Goodenough J, Cox D, Bordallo H 1999 Phys. Rev. B 59 8695

    [10]

    Deisenhofer J, Braak D, Krug von Nidda H A, Hemberger J, Eremina R M, Ivanshin V A, Balbashov A M, Jug G, Loidl A, Kimura T, Tokura Y 2005 Phys. Rev. Lett. 95 257202

    [11]

    Yang R F, Sun Y, He W, Li Q A, Cheng Z H 2007 Appl. Phys. Lett. 90 032502

    [12]

    Battle P D, Green M A, Laskey N S, Millburn J E, Murphy L, Rosseinsky M J, Sullivan S P, Vente J F 1997 Mater. Chem. 7 977

    [13]

    Zhang J, Wang F W, Zhang P L, Yan Q W 2000 Mater. Sci. Eng. B 76 6

    [14]

    Joonghoe D, Kim W S, Hur N H 2001 Phys. Rev. B 65 024404

    [15]

    Ma X, Kou Z Q, Di N L, Li Q A, Cheng Z H 2005 J. Magn. Magn. Mater. 285 439

    [16]

    Wang F, Gukasov A, Moussa F, Hennion M, Apostu M, Suryanarayanan R, Revcolevschi A 2003 Phys. Rev. Lett. 91 47204

    [17]

    Chen C X 2005 J. Inorg. Mater. 20 1 (in Chinese) [陈春霞 2005 无机材料学报 20 1]

    [18]

    Wang H J, Zheng L, Xing R, Zhao J J, Lu Y, Cheng Z H 2012 Sin. China: Phys. Mech. Astron. 42 695 (in Chinese) [王洪金, 郑琳, 邢如, 赵建军, 鲁毅, 成昭华 2012 中国科学: 物理学 力学 天文学42 695]

    [19]

    Zhao J J, Xing R, Lu Y, Hao S B Y E, Zhao M Y, Jin X, Zheng L, Ning W, Sun Y, Cheng Z H 2008 Chin. Phys. B 17 2721

    [20]

    Zhou M, Wu H Y, Wang H J, Zheng L, Zhao J J, Lu Y 2012 Physica B 407 2219

    [21]

    Liu L 2005 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [刘莉 2005 博士学位论文(武汉: 华中科技大学)]

  • [1]

    Zhao J J, Xing R, Lu Y, Haosi B Y, Zhao M Y, Jin X, Zheng L, Ning W, Sun Y, Cheng Z H 2008 Chin. Phys. 17 2721

    [2]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [3]

    Zhao J J, Lu Y, Haosi B Y, Xing R, Yang R F, Li Q A, Sun Y, Cheng Z H 2008 Chin. Phys. 17 2717

    [4]

    Jonker G H 1956 Physica 22 707

    [5]

    Jonker G H, van Santen J H 1950 Physica 16 337

    [6]

    Searle C W, Wang S T 1969 Can. J. Phys. 47 2703

    [7]

    Ram R A M, Ganguly P, Rao C N R 1987 J. Sol. Stat. Chem. 70 82

    [8]

    Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698

    [9]

    Argyriou D N, Mitchell J F, Radaelli P G, Jorgensen J, Goodenough J, Cox D, Bordallo H 1999 Phys. Rev. B 59 8695

    [10]

    Deisenhofer J, Braak D, Krug von Nidda H A, Hemberger J, Eremina R M, Ivanshin V A, Balbashov A M, Jug G, Loidl A, Kimura T, Tokura Y 2005 Phys. Rev. Lett. 95 257202

    [11]

    Yang R F, Sun Y, He W, Li Q A, Cheng Z H 2007 Appl. Phys. Lett. 90 032502

    [12]

    Battle P D, Green M A, Laskey N S, Millburn J E, Murphy L, Rosseinsky M J, Sullivan S P, Vente J F 1997 Mater. Chem. 7 977

    [13]

    Zhang J, Wang F W, Zhang P L, Yan Q W 2000 Mater. Sci. Eng. B 76 6

    [14]

    Joonghoe D, Kim W S, Hur N H 2001 Phys. Rev. B 65 024404

    [15]

    Ma X, Kou Z Q, Di N L, Li Q A, Cheng Z H 2005 J. Magn. Magn. Mater. 285 439

    [16]

    Wang F, Gukasov A, Moussa F, Hennion M, Apostu M, Suryanarayanan R, Revcolevschi A 2003 Phys. Rev. Lett. 91 47204

    [17]

    Chen C X 2005 J. Inorg. Mater. 20 1 (in Chinese) [陈春霞 2005 无机材料学报 20 1]

    [18]

    Wang H J, Zheng L, Xing R, Zhao J J, Lu Y, Cheng Z H 2012 Sin. China: Phys. Mech. Astron. 42 695 (in Chinese) [王洪金, 郑琳, 邢如, 赵建军, 鲁毅, 成昭华 2012 中国科学: 物理学 力学 天文学42 695]

    [19]

    Zhao J J, Xing R, Lu Y, Hao S B Y E, Zhao M Y, Jin X, Zheng L, Ning W, Sun Y, Cheng Z H 2008 Chin. Phys. B 17 2721

    [20]

    Zhou M, Wu H Y, Wang H J, Zheng L, Zhao J J, Lu Y 2012 Physica B 407 2219

    [21]

    Liu L 2005 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [刘莉 2005 博士学位论文(武汉: 华中科技大学)]

  • [1] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [2] 阴敏, 张敏, 吕瑾, 武海顺. TM@Cu12N12团簇磁性第一性原理研究. 物理学报, 2019, 68(20): 203102. doi: 10.7498/aps.68.20190737
    [3] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [4] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响. 物理学报, 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [5] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [7] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [8] 李睿. 准一维半导体量子点中电偶极自旋共振的物理机理. 物理学报, 2015, 64(16): 167303. doi: 10.7498/aps.64.167303
    [9] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [10] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究. 物理学报, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [11] 王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波. 脉冲强磁场高频电子自旋共振装置的研制. 物理学报, 2012, 61(10): 107601. doi: 10.7498/aps.61.107601
    [12] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [16] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [17] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [18] 程萍, 张玉明, 郭辉, 张义门, 廖宇龙. LPCVD法制备的高纯半绝缘4H-SiC晶体ESR谱特性. 物理学报, 2009, 58(6): 4214-4218. doi: 10.7498/aps.58.4214
    [19] 徐荣青, 王嘉赋, 周青春. 极向Kerr效应对电子自旋交换劈裂的依赖性. 物理学报, 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [20] 刘湘娜, 徐刚毅, 眭云霞, 何宇亮, 鲍希茂. 掺杂纳米硅薄膜中电子自旋共振研究. 物理学报, 2001, 50(3): 512-516. doi: 10.7498/aps.50.512
计量
  • 文章访问数:  2610
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-08-13
  • 刊出日期:  2014-12-05

钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究

  • 1. 内蒙古科技大学包头师范学院物理科学与技术学院, 包头 014030;
  • 2. 内蒙古科技大学, 内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室, 包头 014010
    基金项目: 国家自然科学基金(批准号:11164019)、内蒙古自治区科学基金(批准号:2011MS0108,2011MS0101)和内蒙古自治区高等学校科学研究基金(批准号:NJZZ11166,NJ10163,NJZY12202)资助的课题.

摘要: 采用传统固相反应法制备钙钛矿型锰氧化物 (La0.8Eu0.2)4/3Sr5/3Mn2O7多晶样品, X-射线衍射分析表明, 样品(La0.8Eu0.2)4/3Sr5/3Mn2O7结构呈现良好的单相. 通过磁化强度随温度的变化曲线(M-T)、不同温度下磁化强度随磁场的变化曲线(M-H)和电子自旋共振谱发现: 在300 K以下, 随着温度的降低, 样品先后经历了二维短程铁磁有序转变 (TC2D ≈ 282 K)、三维长程铁磁有序转变(TC3D ≈ 259 K)、奈尔转变(TN ≈ 208K)和电荷有序转变(TCO ≈ 35 K); 样品 (La0.8Eu0.2)4/3Sr5/3Mn2O7在TN以下, 主要处于反铁磁态; 在TC3D达到370 K时, 样品处于铁磁-顺磁共存态, 在370 K以上时样品进入顺磁态. 此外, 分析电阻率随温度的变化曲线(ρ-T)得到: 样品在金属-绝缘转变温度(TP ≈ 80 K)附近出现最大磁电阻值, 其位置远离TC3D, 表现出非本征磁电阻现象, 其磁电阻值约为61%. 在TCO以下, 电阻率出现明显增长, 这是由于温度下降使原本在高温部分巡游的eg电子开始自发局域化增强所致. 通过对 (La0.8Eu0.2)4/3Sr5/3Mn2O7的ρ-T 曲线拟合, 发现样品在高温部分的导电方式基本遵循小极化子的导电方式.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回