搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂六角形石墨烯电子输运特性的研究

田文 袁鹏飞 禹卓良 陶斌凯 侯森耀 叶聪 张振华

引用本文:
Citation:

掺杂六角形石墨烯电子输运特性的研究

田文, 袁鹏飞, 禹卓良, 陶斌凯, 侯森耀, 叶聪, 张振华

Electronic properties of doped hexagonal graphene

Tian Wen, Yuan Peng-Fei, Yu Zhuo-Liang, Tao Bin-Kai, Hou Sen-Yao, Ye Cong, Zhang Zhen-Hua
PDF
导出引用
  • 锯齿型和扶手椅型六角形石墨烯分别跨接在两Au电极上, 构成分子纳器件, 同时考虑对六角形石墨烯分别进行B, N和BN局部规则掺杂. 利用第一性原理方法, 系统地研究了这些器件的电子输运特性. 计算结果表明: B及BN掺杂到扶手椅型六角形石墨烯, 对其电流有较好的调控效应, 同时发现本征及掺杂后的锯齿型六角形石墨烯均表现为半导体性质, 且N及BN掺杂时, 表现出明显的负微分电阻现象, 特别是N掺杂的情况, 能呈现显著的负微分电阻效应, 这也许对于发展分子开关有重要应用. 通过其透射特性及掺杂诱发的六角形石墨烯电子结构的变化, 对这些结果的内在原因进行了说明.
    Zigzag- and armchair-edged hexagonal graphenes are sandwiched between two Au electrodes to construct molecular nanodevices, and the effects of the orderly and locally doped with B, N, and BN for such graphene nanoflakes are considered, respectively. Based on the first-principles method, the electronic transport properties of these devices are investigated systematically. Our calculated results show that the using of B and BN to dope armchair-edged hexagonal graphenes can modulate the electronic transport properties significantly. Intrinsic and doped zigzag-hexagonal graphenes presents a semiconductoring behavior, and when it is doped with N and BN, there appears a negative differential resistance (NDR) phenomenon, especially for N-doping, and a very obvious NDR can be observed in zigzag-edged hexagonal grapheme: this might be important for developing molecular switches. The underlying causes for these findings are clearly elucidated by the transmission features and the doping-induced changes in electronic properties of a hexagonal graphene.
    • 基金项目: 国家自然科学基金(批准号: 61371065, 61101009, 61201080, 51302022)、湖南省自然科学基金(批准号: 14JJ2076)、湖南省高校科技创新团队支持计划、湖南省重点学科建设项目和长沙理工大学创新项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 61101009, 61201080, 51302022), the Hunan Provincial Natural Science Foundation of China (Grant No. 14JJ2076), the Aid Program for Science and Technology Innovative Research Team of Institution of Higher Education of Hunan Province, China, the Construct Program of the Key Discipline in Hunan Province, China, and the Innovation Foundation of Changsha University of Science and Technology, China.
    [1]

    Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Appl. Phys. Lett. 85 1265

    [2]

    Zhang L, Wang J 2014 Chin. Phys. B 23 087202

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [5]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [6]

    Yazyev O V, Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 766

    [7]

    Ezawa M 2007 Phys. Rev. B 76 45415

    [8]

    Rossier J F, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [9]

    Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [10]

    Campos L C, Manfrinato V R, Yamagishi J D S, Kong J, Herrero P J 2009 Nano Lett. 9 2600

    [11]

    Li J, Zhang Z H, Zhang J J, Deng X Q 2012 Org. Electron. 13 2257

    [12]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [13]

    Wang W L, Yazyev O, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201

    [14]

    Bahamon D A, Pereira A L C, Schulz P A 2009 Phys. Rev. B 79 125414

    [15]

    Zhang Z Z, Chang K, Peeters F M 2008 Phys. Rev. B 77 235411

    [16]

    Kan E, Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [17]

    Oswald W, Wu Z G 2012 Phys. Rev. B 85 115431

    [18]

    Tang G P, Zhou J C, Zhang Z H, Deng X Q, Fan Z Q 2012 Appl. Phys. Lett. 101 023104

    [19]

    Lin X, Ni J 2011 Phys. Rev. B 84 075461

    [20]

    Liu W, Wang Z F, Shi Q W, Yang J, Liu F 2009 Phys. Rev. B 80 233405

    [21]

    Zeng Y C, Tian W, Zhang Z H 2013 Acta Phys. Sin. 62 236102 (in Chinese) [曾永昌, 田文, 张振华 2013 物理学报 62 236102]

    [22]

    Tian W, Zeng Y C, Zhang Z H 2013 J. Appl. Phys. 114 074307

    [23]

    Ci L J, Song L, Jin C H, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [24]

    Martins T B, Miwa R H, Antônio J R, Fazzio A 2007 Phys. Rev. Lett. 98 196803

    [25]

    Xu B, Lu Y H, Feng Y P, Lin J Y 2010 J. Appl. Phys. 108 073711

    [26]

    Arun K M, Swapan K P 2011 J. Phys. Chem. C 115 10842

    [27]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [28]

    Dubois S M M, Declerck X, Charlier J C, Payne M C 2013 ACS Nano 7 4578

    [29]

    Cheng Z L, Skouta R, Vazquez H, Widawsky J R, Schneebeli S, Chen W, Hybertsen M S, Breslow R, Venkataraman L 2011 Nat. Nanotechnol. 6 353

    [30]

    Sheng W, Ning Z Y, Yang Z Q, Guo H 2010 Nanotechnology 21 385201

    [31]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [32]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [33]

    Zeng J, Chen K Q 2012 Phys. Chem. Chem. Phys. 14 8032

    [34]

    Landauer R 1970 Philos. Mag. 21 863

  • [1]

    Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Appl. Phys. Lett. 85 1265

    [2]

    Zhang L, Wang J 2014 Chin. Phys. B 23 087202

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [5]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [6]

    Yazyev O V, Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 766

    [7]

    Ezawa M 2007 Phys. Rev. B 76 45415

    [8]

    Rossier J F, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [9]

    Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [10]

    Campos L C, Manfrinato V R, Yamagishi J D S, Kong J, Herrero P J 2009 Nano Lett. 9 2600

    [11]

    Li J, Zhang Z H, Zhang J J, Deng X Q 2012 Org. Electron. 13 2257

    [12]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [13]

    Wang W L, Yazyev O, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201

    [14]

    Bahamon D A, Pereira A L C, Schulz P A 2009 Phys. Rev. B 79 125414

    [15]

    Zhang Z Z, Chang K, Peeters F M 2008 Phys. Rev. B 77 235411

    [16]

    Kan E, Li Z, Yang J, Hou J G 2008 J. Am. Chem. Soc. 130 4224

    [17]

    Oswald W, Wu Z G 2012 Phys. Rev. B 85 115431

    [18]

    Tang G P, Zhou J C, Zhang Z H, Deng X Q, Fan Z Q 2012 Appl. Phys. Lett. 101 023104

    [19]

    Lin X, Ni J 2011 Phys. Rev. B 84 075461

    [20]

    Liu W, Wang Z F, Shi Q W, Yang J, Liu F 2009 Phys. Rev. B 80 233405

    [21]

    Zeng Y C, Tian W, Zhang Z H 2013 Acta Phys. Sin. 62 236102 (in Chinese) [曾永昌, 田文, 张振华 2013 物理学报 62 236102]

    [22]

    Tian W, Zeng Y C, Zhang Z H 2013 J. Appl. Phys. 114 074307

    [23]

    Ci L J, Song L, Jin C H, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [24]

    Martins T B, Miwa R H, Antônio J R, Fazzio A 2007 Phys. Rev. Lett. 98 196803

    [25]

    Xu B, Lu Y H, Feng Y P, Lin J Y 2010 J. Appl. Phys. 108 073711

    [26]

    Arun K M, Swapan K P 2011 J. Phys. Chem. C 115 10842

    [27]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [28]

    Dubois S M M, Declerck X, Charlier J C, Payne M C 2013 ACS Nano 7 4578

    [29]

    Cheng Z L, Skouta R, Vazquez H, Widawsky J R, Schneebeli S, Chen W, Hybertsen M S, Breslow R, Venkataraman L 2011 Nat. Nanotechnol. 6 353

    [30]

    Sheng W, Ning Z Y, Yang Z Q, Guo H 2010 Nanotechnology 21 385201

    [31]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [32]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [33]

    Zeng J, Chen K Q 2012 Phys. Chem. Chem. Phys. 14 8032

    [34]

    Landauer R 1970 Philos. Mag. 21 863

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究. 物理学报, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [4] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [5] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [6] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为. 物理学报, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [7] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [8] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质. 物理学报, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [9] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [10] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [11] 李忠虎, 李林, 祁阳. BaCoxZn2-xFe16O27六角铁氧体电子结构与介电特性的第一性原理研究. 物理学报, 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [12] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移. 物理学报, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [13] 金硕, 孙璐. 带有碳杂质的钨中氢稳定性的第一性原理研究 . 物理学报, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [14] 李忠虎, 李林, 朱林. W形六角铁氧体BaFe18O27电子结构与导电性的第一性原理研究. 物理学报, 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [15] 刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊. In掺杂ZnO电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4925-4929. doi: 10.7498/aps.59.4925
    [16] 原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦. BeO高压相变和声子谱的第一性原理计算. 物理学报, 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [17] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [18] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [19] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [20] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
计量
  • 文章访问数:  3286
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-21
  • 修回日期:  2014-10-01
  • 刊出日期:  2015-02-05

掺杂六角形石墨烯电子输运特性的研究

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
    基金项目: 国家自然科学基金(批准号: 61371065, 61101009, 61201080, 51302022)、湖南省自然科学基金(批准号: 14JJ2076)、湖南省高校科技创新团队支持计划、湖南省重点学科建设项目和长沙理工大学创新项目资助的课题.

摘要: 锯齿型和扶手椅型六角形石墨烯分别跨接在两Au电极上, 构成分子纳器件, 同时考虑对六角形石墨烯分别进行B, N和BN局部规则掺杂. 利用第一性原理方法, 系统地研究了这些器件的电子输运特性. 计算结果表明: B及BN掺杂到扶手椅型六角形石墨烯, 对其电流有较好的调控效应, 同时发现本征及掺杂后的锯齿型六角形石墨烯均表现为半导体性质, 且N及BN掺杂时, 表现出明显的负微分电阻现象, 特别是N掺杂的情况, 能呈现显著的负微分电阻效应, 这也许对于发展分子开关有重要应用. 通过其透射特性及掺杂诱发的六角形石墨烯电子结构的变化, 对这些结果的内在原因进行了说明.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回