搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介质环形柱结构的二维光子晶体中Dirac点的实现

张中杰 沈义峰 赵浩

引用本文:
Citation:

基于介质环形柱结构的二维光子晶体中Dirac点的实现

张中杰, 沈义峰, 赵浩

Photonic Dirac point realized in two dimensional annular photonic crystals

Zhang Zhong-Jie, Shen Yi-Feng, Zhao Hao
PDF
导出引用
  • 利用偶然简并方法在二维正方格子介质环形柱结构光子晶体中成功实现了Dirac点, 并利用平面波展开法对实现Dirac点的过程进行了研究. 研究结果表明, 对于二维正方格子介质环形柱结构光子晶体, 在一定的外径RO范围内(0.37aROa), 当Dirac点存在时(n>1.4), 介质环内径RI与外径RO满足一个不随介质环折射率n变化的恒定关系式. 同时, Dirac点对应的光子约化频率f随折射率n及外径RO的增大而减小. 利用所得的关系式对特定介质环折射率n条件下能实现Dirac点的环形光子晶体进行了预判设计.
    The Dirac cones in photonic crystals have aroused much interest in the last few years. Annular photonic crystals have also been well studied for designing and controlling the band gap because they have more parameters than usual photonic crystal. In this paper, we study a two-dimensional square lattice dielectric annular photonic crystal to explore the formation of the photonic Dirac cone by the accidental degeneracy method. The theoretical tool is the plane wave expansion method. The results show that this system can provide a Dirac point in the center of the Brillouin-zone in the photonic band if both the outer radius and the inner radius of each scatterer are chosen to be appreciate values when the dielectric refractive index of the annular rod is fixed. For example, there is a Dirac point at the photonic normalized frequency f=0.438(c/a) when n=3.4, RO=0.42a, RI=0.305a, where f is the frequency, c is the light speed in vacuum, a is the lattice constant, n is the refractive index, RO is the outer radius, and RI is the inner radius. It is also found that within a confined region of outer radius RO(0.37aROa), when a Dirac point is realized in the annular photonic crystal (n>1.4), the inner radius RI and the outer radius RO obey a relation of RI=-1.104+8.167RO+(-11.439)RO2, which is unrelated to the refractive index n of the dielectric annular rod. If n is less than 1.4, this rule is not valid. At the same time, the normalized frequency at which the Dirac point is realized, decreases with increasing both refractive index n and outer radius RO. Especially, the curves of the relation between photonic frequency f and outer radius RO almost do not change their profiles but only be shifted up and down with changing the refractive index n. Based on this, we also design and predict the annular photonic crystal which provides a Dirac point. The goal is to obtain the other relative parameters (frequency f, outer radius RO and the inner radius RI) of the photonic crystal system if the refractive index n is fixed. The values of the prediction agree very well with the values obtained by the rigid theoretical calculation within a relative error of only 4%.
    • 基金项目: 中国矿业大学中央高校基本科研业务费专项基金(批准号: 2013QNA40)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the China University of Mining and Technology, China (Grant No. 2013QNA40).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Liu Y H, He L, Shi Y L 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 621

    [4]

    Zhang X D 2008 Phys. Lett. A 372 3512

    [5]

    Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510

    [6]

    Bittner S, Dietz B, Miski-Oglu M, Oria-Iriarte P, Richter A, Schafer F 2010 Phys. Rev. B 82 014301

    [7]

    Katsnelson M I 2006 Eur. Phys. J. B 51 157

    [8]

    Sepkhanov R A, Beenakker C W J 2008 Opt. Commun. 281 5267

    [9]

    Guo H, Liu H G, Zhang X, Chen H J, Wang W X, Wang S K, Cui Y P 2013 Appl. Phys. Express 6 042003

    [10]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [11]

    Sakoda K 2014 Int. J. Mod. Phys. B 28 1441008

    [12]

    Kurt H, Citrin D S 2005 Opt. Express 13 10316

    [13]

    Kurt H, Hao R, Chen Y, Feng J, Blair J, Gaillot D P, Summers C, Citrin D S, Zhou Z 2008 Opt. Lett. 33 1614

    [14]

    Wu H, Citrin D S, Jiang L Y, Li X Y 2013 Appl. Phys. Lett. 102 141112

    [15]

    Xia F, Yun M, Liu M, Liang J, Kong W, Tan H, Lü W 2013 J. Appl. Phys. 113 013109

    [16]

    Yucel M B, Cicek A, Ulug B 2013 Photon. Nanostruct. 11 270

    [17]

    Jiang L, Wu H, Li X 2013 J. Opt. Soc. Am. B: Opt. Phys. 30 1248

    [18]

    Guo S, Albin S 2003 Opt. Express 11 167

    [19]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press) pp20-21

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Liu Y H, He L, Shi Y L 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 621

    [4]

    Zhang X D 2008 Phys. Lett. A 372 3512

    [5]

    Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510

    [6]

    Bittner S, Dietz B, Miski-Oglu M, Oria-Iriarte P, Richter A, Schafer F 2010 Phys. Rev. B 82 014301

    [7]

    Katsnelson M I 2006 Eur. Phys. J. B 51 157

    [8]

    Sepkhanov R A, Beenakker C W J 2008 Opt. Commun. 281 5267

    [9]

    Guo H, Liu H G, Zhang X, Chen H J, Wang W X, Wang S K, Cui Y P 2013 Appl. Phys. Express 6 042003

    [10]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [11]

    Sakoda K 2014 Int. J. Mod. Phys. B 28 1441008

    [12]

    Kurt H, Citrin D S 2005 Opt. Express 13 10316

    [13]

    Kurt H, Hao R, Chen Y, Feng J, Blair J, Gaillot D P, Summers C, Citrin D S, Zhou Z 2008 Opt. Lett. 33 1614

    [14]

    Wu H, Citrin D S, Jiang L Y, Li X Y 2013 Appl. Phys. Lett. 102 141112

    [15]

    Xia F, Yun M, Liu M, Liang J, Kong W, Tan H, Lü W 2013 J. Appl. Phys. 113 013109

    [16]

    Yucel M B, Cicek A, Ulug B 2013 Photon. Nanostruct. 11 270

    [17]

    Jiang L, Wu H, Li X 2013 J. Opt. Soc. Am. B: Opt. Phys. 30 1248

    [18]

    Guo S, Albin S 2003 Opt. Express 11 167

    [19]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press) pp20-21

  • [1] 王海啸, 徐林, 蒋建华. Dirac光子晶体. 物理学报, 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [2] 肖利, 雷天宇, 梁禺, 赵敏, 刘慧, 张斯淇, 李宏, 马季, 吴向尧. 二维函数光子晶体. 物理学报, 2016, 65(13): 134207. doi: 10.7498/aps.65.134207
    [3] 胡晓颖, 呼和满都拉, 曹永军. 三角晶格磁振子晶体带结构的优化研究. 物理学报, 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [4] 刘会, 刘丹, 赵恒, 高义华. 空气环型二维光子晶体完全带隙特性研究. 物理学报, 2013, 62(19): 194208. doi: 10.7498/aps.62.194208
    [5] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [6] 栗岩锋, 胡晓堃, 王爱民. 基于高折射率断环结构的全固光子带隙光纤的设计. 物理学报, 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [7] 袁桂芳, 韩利红, 俞重远, 刘玉敏, 芦鹏飞. 二维光子晶体禁带特性研究. 物理学报, 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [8] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [9] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究. 物理学报, 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [10] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [11] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [12] 吴慧婷, 王海龙, 姜黎明. 有效质量差异和电场对GaN/AlxGa1-xN球形量子点电子结构的影响. 物理学报, 2009, 58(1): 465-470. doi: 10.7498/aps.58.465
    [13] 程旭攀, 曹全喜. 二维圆柱形光子晶体的完全禁带研究. 物理学报, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [14] 刘頔威, 刘盛纲. 二维单斜点阵光子晶体的第一布里渊区及带隙计算. 物理学报, 2007, 56(5): 2747-2750. doi: 10.7498/aps.56.2747
    [15] 殷建玲, 黄旭光, 刘颂豪, 胡社军. 液晶调制的光子晶体可控偏光片和光开关. 物理学报, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [16] 刘 欢, 姚建铨, 李恩邦, 温午麒, 张 强, 王 鹏. 三维光子晶体典型结构完全禁带的最佳参数理论分析. 物理学报, 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [17] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究. 物理学报, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [18] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [19] 肖三水, 沈林放, 何赛灵. 低频和高频区域内大禁带的二维各向异性光子晶体. 物理学报, 2002, 51(12): 2858-2864. doi: 10.7498/aps.51.2858
    [20] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用. 物理学报, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
计量
  • 文章访问数:  3172
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-26
  • 修回日期:  2015-03-09
  • 刊出日期:  2015-07-05

基于介质环形柱结构的二维光子晶体中Dirac点的实现

  • 1. 中国矿业大学理学院物理系, 徐州 221116
    基金项目: 中国矿业大学中央高校基本科研业务费专项基金(批准号: 2013QNA40)资助的课题.

摘要: 利用偶然简并方法在二维正方格子介质环形柱结构光子晶体中成功实现了Dirac点, 并利用平面波展开法对实现Dirac点的过程进行了研究. 研究结果表明, 对于二维正方格子介质环形柱结构光子晶体, 在一定的外径RO范围内(0.37aROa), 当Dirac点存在时(n>1.4), 介质环内径RI与外径RO满足一个不随介质环折射率n变化的恒定关系式. 同时, Dirac点对应的光子约化频率f随折射率n及外径RO的增大而减小. 利用所得的关系式对特定介质环折射率n条件下能实现Dirac点的环形光子晶体进行了预判设计.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回