搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应

王德 沈容 刘灿灿 韦世强 陆坤权

引用本文:
Citation:

纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应

王德, 沈容, 刘灿灿, 韦世强, 陆坤权

Evaporation enhancement effect of TiO2 nanoparticles on silicone oil in electrorheological fluid suspension

Wang De, Shen Rong, Liu Can-Can, Wei Shi-Qiang, Lu Kun-Quan
PDF
导出引用
  • 物理化学性能稳定的二甲基硅油常作为电流变液分散相, 当与纳米量级的介电颗粒混合组成电流变悬浮液时, 在非密闭环境下极易挥发, 时间足够长时, 可完全挥发. 本文通过实验研究了纳米二氧化钛颗粒对二氧化钛和硅油组成的悬浮液中硅油挥发增强现象, 分析表明, 纳米颗粒在电流变悬浮液的硅油气-液界面上形成纳米尺度的凸型曲面, 使液面上蒸气压大大提高, 导致挥发增强. 本文还对颗粒浓度, 环境温度和硅油黏度等对硅油挥发增强效应的影响进行了系统的研究和分析.
    Electrorheological (ER) fluids are suspensions which consist of dielectric particles and insulation fluid. The ER fluids can change from liquid-like to solid-like state under the applied electric field. For traditional ER fluids, the maximum yield/shear stress is only several kPa and the size of dielectric particles is generally of micron. Since 2003, a series of new type ER fluids have been discovered, of which the yield/shear stress is as high as several hundred kPa. Such a type of ER fluid is called giant ER fluid or polar molecule-dominated ER fluid (PM-ER fluid), in which the size of dispersed particles is of nanoscale. Dimethyl silicone oil is the most commonly used dispersing agent in ER fluids, because of its stable physical and chemical behaviors. There is no obvious evaporation in traditional ER fluids when it is mixed with micron grade particles. However, when it is mixed with nanoparticles to prepare giant ER fluids, the silicone oil volatilizes easily in atmosphere. If time is long enough, the silicone oil in ER suspension can even be evaporated completely. In this paper, the existence of TiO2 nanoparticles in ER suspensions enhances the volatilization phenomenon has been studied through experiment. Analysis shows that the nanoparticles caused convex nanoscale curved surfaces on the gas-solid interface makes the vapor pressure increase greatly at the silicone oil surface, and leads to the enhancement of its volatilization. Influence of particle concentration, environmental temperature and viscosity of silicone oil on the evaporation enhancement effect is also studied and analysed systematically. Results show that the increase of the fraction of nanoparticles, viscosity of silicone oil as well as the temperature would promote the effect of evaporation enhancement of silicone oil in the suspensions.
    • 基金项目: 国家自然科学基金(批准号: 10674156, 11174332)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674156, 11174332).
    [1]

    Winslow W M 1949 J. Appl. Phys. 20 1137

    [2]

    Halsey T C 1992 Science 258 761

    [3]

    Ma H R, Wen W J, Tam W Y, Sheng P 1996 Phys. Rev. Lett. 77 2499

    [4]

    Liu Y D, Choi H J 2012 Soft Matter 8 11961

    [5]

    Wen W J, Huang X X, Yang S H, Lu K Q, Sheng P 2003 Nat. Mater. 2 727

    [6]

    Yin J B, Zhao X P 2004 Chem. Phys. Lett. 398 393

    [7]

    Wang X Z, Shen R, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1110

    [8]

    Lu K Q, Shen R, Wang X Z, Sun G, Wen W J, Liu J X 2006 Chinese Phys. B 15 2476

    [9]

    Shen R, Wang X Z, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1104

    [10]

    Tan P, Tian W J, Wu X F, Huang J Y, Zhou L W, Huang J P 2009 J. Phys. Chem. B 113 9092

    [11]

    Orellana C S, He J B, Jaeger H M 2011 Soft Matter 7 8023

    [12]

    Wang D, Shen R, Wei S Q, Lu K Q 2013 Smart Mater. Struct. 22 5

    [13]

    Zhang W B, Shen R, Lu K Q, Ji A L, Cao Z X 2012 Aip. Adv. 2 042119

    [14]

    Promislow J H E, Gast A P 1997 Phys. Rev. E 56 642

    [15]

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry 5th edition (Vol. 1) (Higher Education Press) (in Chinese) [付彩霞, 沈文霞, 姚天扬, 侯文华 2005 物理化学(上册)(高等教育出版社)]

    [16]

    ShlnTsru 2004 Silicone Fluid KF-96 Performance Test Results (Shin-Etsu Chenical Co, Ltd.)

    [17]

    Bates O K 1949 Ind. Enging. Chem. 41 1966

    [18]

    Mark J E 1999 Polymer Data Handbook (Oxford University Press, Inc.)

  • [1]

    Winslow W M 1949 J. Appl. Phys. 20 1137

    [2]

    Halsey T C 1992 Science 258 761

    [3]

    Ma H R, Wen W J, Tam W Y, Sheng P 1996 Phys. Rev. Lett. 77 2499

    [4]

    Liu Y D, Choi H J 2012 Soft Matter 8 11961

    [5]

    Wen W J, Huang X X, Yang S H, Lu K Q, Sheng P 2003 Nat. Mater. 2 727

    [6]

    Yin J B, Zhao X P 2004 Chem. Phys. Lett. 398 393

    [7]

    Wang X Z, Shen R, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1110

    [8]

    Lu K Q, Shen R, Wang X Z, Sun G, Wen W J, Liu J X 2006 Chinese Phys. B 15 2476

    [9]

    Shen R, Wang X Z, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1104

    [10]

    Tan P, Tian W J, Wu X F, Huang J Y, Zhou L W, Huang J P 2009 J. Phys. Chem. B 113 9092

    [11]

    Orellana C S, He J B, Jaeger H M 2011 Soft Matter 7 8023

    [12]

    Wang D, Shen R, Wei S Q, Lu K Q 2013 Smart Mater. Struct. 22 5

    [13]

    Zhang W B, Shen R, Lu K Q, Ji A L, Cao Z X 2012 Aip. Adv. 2 042119

    [14]

    Promislow J H E, Gast A P 1997 Phys. Rev. E 56 642

    [15]

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry 5th edition (Vol. 1) (Higher Education Press) (in Chinese) [付彩霞, 沈文霞, 姚天扬, 侯文华 2005 物理化学(上册)(高等教育出版社)]

    [16]

    ShlnTsru 2004 Silicone Fluid KF-96 Performance Test Results (Shin-Etsu Chenical Co, Ltd.)

    [17]

    Bates O K 1949 Ind. Enging. Chem. 41 1966

    [18]

    Mark J E 1999 Polymer Data Handbook (Oxford University Press, Inc.)

  • [1] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [2] 巫金波, 温维佳. 场诱导软物质智能材料研究进展. 物理学报, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [3] 夏辉, 杨伟国. 浓悬浮液中纳米SiO2团聚体的渗透率. 物理学报, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [4] 杨素红, 赵立山, 王强, 沈容, 孙刚, 李晨曦, 陆坤权. 以二氧化钛前驱体为基的电流变液的成分分析和机理研究. 物理学报, 2013, 62(16): 164701. doi: 10.7498/aps.62.164701
    [5] 沈学举, 王龙, 韩玉东, 李征. 甲基红掺杂碳纳米管悬浮液的光限幅特性研究. 物理学报, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [6] 赵晟, 尹剑波, 赵晓鹏. 金纳米流体的电场可调光学性质. 物理学报, 2010, 59(5): 3302-3308. doi: 10.7498/aps.59.3302
    [7] 王学昭, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 崔平. 极性分子型电流变液导电机理研究. 物理学报, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [8] 罗春荣, 王连胜, 郭继权, 黄勇, 赵晓鹏. 电流变液调控的连通树枝状结构左手材料. 物理学报, 2009, 58(5): 3214-3219. doi: 10.7498/aps.58.3214
    [9] 张敏梁, 田煜, 蒋继乐, 孟永钢, 温诗铸. 极板形貌修饰对电流变液/极板界面滑移抑制实验研究. 物理学报, 2009, 58(12): 8394-8399. doi: 10.7498/aps.58.8394
    [10] 王连胜, 罗春荣, 黄 勇, 赵晓鹏. 基于电流变液的可调谐负磁导率材料. 物理学报, 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
    [11] 黄 敏, 赵晓鹏, 王宝祥, 尹剑波, 曹昌年. 电流变液微波反射可调控性. 物理学报, 2004, 53(6): 1895-1899. doi: 10.7498/aps.53.1895
    [12] 欧阳成. 电流变液系统流动的渐近估计. 物理学报, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [13] 赵晓鹏, 高秀敏, 高向阳, 郜丹军. 固液双相电流变系统流动过程的相转变特性. 物理学报, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
    [14] 赵晓鹏, 高秀敏, 郜丹军, 钟鸿飞. 颗粒质量导致的电流变液结构演化特征. 物理学报, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
    [15] 赵晓鹏, 郜丹军. 考虑多颗粒近程相互作用的电流变液泊肃叶流动行为. 物理学报, 2001, 50(6): 1115-1120. doi: 10.7498/aps.50.1115
    [16] 赵晓鹏, 范吉军, 高秀敏, 曹昌年. 电流变液的微波透射调控行为. 物理学报, 2001, 50(7): 1302-1307. doi: 10.7498/aps.50.1302
    [17] 刘立伟, 王作维, 周鲁卫, 王治金, 高广君, 刘晓军. 微晶纤维素电流变液在挤压流中的粘弹性. 物理学报, 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [18] 许素娟, 门守强, 王 彪, 陆坤权. TiO2包覆石墨颗粒/硅油电流变液的研究. 物理学报, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
    [19] 吴烽, 汪秉宏, 杨月桂, 姚斌. 电流变液中悬浮粒子的布朗运动与其聚集之间关系. 物理学报, 1996, 45(3): 403-408. doi: 10.7498/aps.45.403
    [20] 魏荣爵, 张淑仪. 超声波在悬浮液(水)中的吸收. 物理学报, 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
计量
  • 文章访问数:  3066
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-26
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-08-05

纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应

  • 1. 中国科学技术大学, 国家同步辐射实验室, 合肥 230029;
  • 2. 中国科学院物理研究所, 软物质与生物物理实验室, 北京 100190
    基金项目: 国家自然科学基金(批准号: 10674156, 11174332)资助的课题.

摘要: 物理化学性能稳定的二甲基硅油常作为电流变液分散相, 当与纳米量级的介电颗粒混合组成电流变悬浮液时, 在非密闭环境下极易挥发, 时间足够长时, 可完全挥发. 本文通过实验研究了纳米二氧化钛颗粒对二氧化钛和硅油组成的悬浮液中硅油挥发增强现象, 分析表明, 纳米颗粒在电流变悬浮液的硅油气-液界面上形成纳米尺度的凸型曲面, 使液面上蒸气压大大提高, 导致挥发增强. 本文还对颗粒浓度, 环境温度和硅油黏度等对硅油挥发增强效应的影响进行了系统的研究和分析.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回