搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象

刘德浩 任芮彬 杨博 罗懋康

引用本文:
Citation:

涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象

刘德浩, 任芮彬, 杨博, 罗懋康

Chaotic transport of fractional over-damped ratchet with fluctuation and periodic drive

Liu De-Hao, Ren Rui-Bin, Yang Bo, Luo Mao-Kang
PDF
导出引用
  • 考虑涨落作用下周期驱动的过阻尼分数阶棘轮模型, 通过模型的数值求解, 研究确定性棘轮的混沌特性与噪声的作用对输运行为的影响, 进而讨论过阻尼分数阶分子马达反向输运的机理. 分析表明: 随着势垒高度、 势不对称性与模型记忆性的变化, 随机棘轮的反向输运并不必然地要求确定性棘轮也反向输运; 随着模型阶数的减小, 亦即分数阻尼介质记忆性的增强, 确定性棘轮在反向输运之前会经历一个周期倍化导致的混沌状态, 但在噪声作用下, 反向流的发生会提前, 即混沌状态的确定性棘轮在噪声的作用下即可进行反向输运. 也就是说, 噪声能定性地改变棘轮的输运状态: 从无噪声时的混沌运动到有噪声时的定向输运. 这是过阻尼随机棘轮反向输运的一种机理, 也是噪声在定向输运过程中发挥积极作用的一个体现.
    The fractional over-damped ratchet model with thermal fluctuation and periodic drive is introduced by using the damping kernel function of general Langevin equation in the form of power law based on the assumption that cytosol in biological cells has characteristics of power-law memory. On basis of the Grunwald-Letnikov definition of fractional derivative, the numerical solution of this ratchet model is obtained. And furthermore, according to the numerical solution, the transport behaviors of stochastic ratchet and corresponding deterministic ratchet (especially when the deterministic ratchet has chaotic trajectory) are investigated, based on which we try to analyze how chaotic properties of the deterministic ratchet and the actions of noise influence the transport properties of molecular motors and moreover find the possible mechanism of current reversal of fractional molecular motor. Numerical results show that, as barrier height, barrier asymmetry and memorability of model change, the current reversal in deterministic ratchet is not necessarily required to appear when happening indeed in corresponding stochastic ratchet; moreover, with the decrease of order p, there exists a chaotic regime in deterministic ratchet model before current reversal, but with the disturbance of noise, current reversal will happen more earlier, namely, chaotic current direction in deterministic ratchet model can be reversed when disturbance of noise exists. This also demonstrates that noise can essentially change the transport behavior of a ratchet; current can change from chaotic state in a ratchet with no noise to directed transport with noise. This is a possible mechanism of current reversal of a fractional stochastic ratchet, and also a reflection that noise plays an active role in directed transport.
      通信作者: 罗懋康, makaluo@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11171238)资助的课题.
      Corresponding author: Luo Mao-Kang, makaluo@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238).
    [1]

    Vale R D, Milligan R A 2000 Science 288 88

    [2]

    Nishyama M, Muto E, Inoue Y 2002 Nature Cell Biology 3 425

    [3]

    Zhan Y 2011 Biophysics (Beijing: Science Press) pp53-58 (in Chinese) [展永 2011 生物物理学 (北京: 科学出版社) 第5358页]

    [4]

    Liu H, Schmidt J J, Bachand G D, Rizk S S, Looger L L, Hellinga H W, Montemagno C D 2002 Nature Mater. 1 173

    [5]

    Ren Q, Zhao Y P, Yue J C, Cui Y B 2006 Biomed. Microdev. 8 201

    [6]

    Su T, Cui Y B, Zhang X A, Liu X, Yue J C, Liu N, Jiang P 2006 Biochem. Biophys. Res. Commun. 350 1013

    [7]

    Deng Z T, Zhang Y, Yue J C, Tang F Q, Wei Q 2007 J. Phys. Chem. B 111 12024

    [8]

    Zhao T J, Zhan Y, Yu H, Song Y L, An H L 2003 Commun. Theor. Phys. 39 653

    [9]

    Han Y R, Zhao T J, Zhan Y, Yan W L 2005 Commun. Theor. Phys. 43 377

    [10]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [11]

    Wang H Y, He H S, Bao J D 2005 Commun. Theor. Phys. 43 229

    [12]

    Hnggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [13]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [14]

    Xie P, Dou S X, Wang P Y 2006 Chin. Phys. 15 536

    [15]

    Souza S, Van V J, Morelle M 2006 Nature 440 651

    [16]

    Igarashi A, Tsukamoto S, Goko H 2001 Phys. Rev. E 64 051908

    [17]

    Wang H Y, Bao J D 2004 Physica A 337 13

    [18]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 1179

    [19]

    Hondou T, Sawada Y 1996 Phys. Rev. E 54 3149

    [20]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 物理学报 63 110501]

    [21]

    Gao T F, Zheng Z G, Chen J C 2013 Chin. Phys. B 22 080502

    [22]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [23]

    Tarasov V E 2010 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles Fields and Media (Beijing: Higher Education Press) p442

    [24]

    Bao J D 2012 An Introduction to Anomalous Statisticl Dynamics (Beijing: Science Press) pp127-184 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第127184页]

    [25]

    Baiwen S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [26]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [27]

    Fereydoon F, Larrondo H A 2005 J. Phys.: Condens. Matter 17 47

    [28]

    Jung P, Kissner J G 1996 Phys. Rev. Lett. 76 343

  • [1]

    Vale R D, Milligan R A 2000 Science 288 88

    [2]

    Nishyama M, Muto E, Inoue Y 2002 Nature Cell Biology 3 425

    [3]

    Zhan Y 2011 Biophysics (Beijing: Science Press) pp53-58 (in Chinese) [展永 2011 生物物理学 (北京: 科学出版社) 第5358页]

    [4]

    Liu H, Schmidt J J, Bachand G D, Rizk S S, Looger L L, Hellinga H W, Montemagno C D 2002 Nature Mater. 1 173

    [5]

    Ren Q, Zhao Y P, Yue J C, Cui Y B 2006 Biomed. Microdev. 8 201

    [6]

    Su T, Cui Y B, Zhang X A, Liu X, Yue J C, Liu N, Jiang P 2006 Biochem. Biophys. Res. Commun. 350 1013

    [7]

    Deng Z T, Zhang Y, Yue J C, Tang F Q, Wei Q 2007 J. Phys. Chem. B 111 12024

    [8]

    Zhao T J, Zhan Y, Yu H, Song Y L, An H L 2003 Commun. Theor. Phys. 39 653

    [9]

    Han Y R, Zhao T J, Zhan Y, Yan W L 2005 Commun. Theor. Phys. 43 377

    [10]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [11]

    Wang H Y, He H S, Bao J D 2005 Commun. Theor. Phys. 43 229

    [12]

    Hnggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [13]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [14]

    Xie P, Dou S X, Wang P Y 2006 Chin. Phys. 15 536

    [15]

    Souza S, Van V J, Morelle M 2006 Nature 440 651

    [16]

    Igarashi A, Tsukamoto S, Goko H 2001 Phys. Rev. E 64 051908

    [17]

    Wang H Y, Bao J D 2004 Physica A 337 13

    [18]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 1179

    [19]

    Hondou T, Sawada Y 1996 Phys. Rev. E 54 3149

    [20]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 物理学报 63 110501]

    [21]

    Gao T F, Zheng Z G, Chen J C 2013 Chin. Phys. B 22 080502

    [22]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [23]

    Tarasov V E 2010 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles Fields and Media (Beijing: Higher Education Press) p442

    [24]

    Bao J D 2012 An Introduction to Anomalous Statisticl Dynamics (Beijing: Science Press) pp127-184 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第127184页]

    [25]

    Baiwen S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [26]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [27]

    Fereydoon F, Larrondo H A 2005 J. Phys.: Condens. Matter 17 47

    [28]

    Jung P, Kissner J G 1996 Phys. Rev. Lett. 76 343

  • [1] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步. 物理学报, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [3] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [4] 刘晓君, 洪灵, 江俊. 非自治分数阶Duffing系统的激变现象. 物理学报, 2016, 65(18): 180502. doi: 10.7498/aps.65.180502
    [5] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步. 物理学报, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [6] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [7] 姚天亮, 刘海峰, 许建良, 李伟锋. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计. 物理学报, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [8] 钟苏川, 高仕龙, 韦鹍, 马洪. 线性过阻尼分数阶Langevin方程的共振行为. 物理学报, 2012, 61(17): 170501. doi: 10.7498/aps.61.170501
    [9] 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究. 物理学报, 2011, 60(4): 048901. doi: 10.7498/aps.60.048901
    [10] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [11] 胡建兵, 韩焱, 赵灵冬. 分数阶系统的一种稳定性判定定理及在分数阶统一混沌系统同步中的应用. 物理学报, 2009, 58(7): 4402-4407. doi: 10.7498/aps.58.4402
    [12] 戎海武, 王向东, 徐 伟, 方 同. 多频谐和与噪声作用下Flickering振子的安全盆侵蚀与混沌. 物理学报, 2008, 57(3): 1506-1513. doi: 10.7498/aps.57.1506
    [13] 赵品栋, 张晓丹. 一类分数阶混沌系统的研究. 物理学报, 2008, 57(5): 2791-2798. doi: 10.7498/aps.57.2791
    [14] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [15] 雷佑铭, 徐 伟. 有界噪声和谐和激励联合作用下一类非线性系统的混沌研究. 物理学报, 2007, 56(9): 5103-5110. doi: 10.7498/aps.56.5103
    [16] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌. 物理学报, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [17] 张成芬, 高金峰, 徐 磊. 分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步. 物理学报, 2007, 56(9): 5124-5130. doi: 10.7498/aps.56.5124
    [18] 杨晓丽, 徐 伟, 孙中奎. 谐和激励与有界噪声作用下具有同宿和异宿轨道的Duffing振子的混沌运动. 物理学报, 2006, 55(4): 1678-1686. doi: 10.7498/aps.55.1678
    [19] 韦保林, 罗晓曙, 汪秉宏, 全宏俊, 郭维, 傅金阶. 一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法. 物理学报, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [20] 张家树, 肖先赐. 用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器. 物理学报, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
计量
  • 文章访问数:  3289
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 修回日期:  2015-07-10
  • 刊出日期:  2015-11-05

涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象

    基金项目: 国家自然科学基金(批准号: 11171238)资助的课题.

摘要: 考虑涨落作用下周期驱动的过阻尼分数阶棘轮模型, 通过模型的数值求解, 研究确定性棘轮的混沌特性与噪声的作用对输运行为的影响, 进而讨论过阻尼分数阶分子马达反向输运的机理. 分析表明: 随着势垒高度、 势不对称性与模型记忆性的变化, 随机棘轮的反向输运并不必然地要求确定性棘轮也反向输运; 随着模型阶数的减小, 亦即分数阻尼介质记忆性的增强, 确定性棘轮在反向输运之前会经历一个周期倍化导致的混沌状态, 但在噪声作用下, 反向流的发生会提前, 即混沌状态的确定性棘轮在噪声的作用下即可进行反向输运. 也就是说, 噪声能定性地改变棘轮的输运状态: 从无噪声时的混沌运动到有噪声时的定向输运. 这是过阻尼随机棘轮反向输运的一种机理, 也是噪声在定向输运过程中发挥积极作用的一个体现.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回