搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究

于永吉 陈薪羽 成丽波 王超 吴春婷 董渊 李述涛 金光勇

引用本文:
Citation:

基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究

于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇

Continuous-wave 1.57 m/3.84 m intra-cavity multiple optical parametric oscillator based on MgO:APLN

Yu Yong-Ji, Chen Xin-Yu, Cheng Li-Bo, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong
PDF
导出引用
  • 报道了一种基于MgO:APLN实现1.57 m和3.84 m跨周期参量光连续输出的内腔抽运多光参量振荡器. 采用1064 nm谐振腔与多光参量振荡腔折叠型复合结构, 综合考虑高功率抽运下谐振腔的热稳定性及多光参量振荡过程的光斑模式匹配, 通过对两个子腔谐振结构的数值模拟分析, 确定了最佳腔型参数. 在此基础上, 进一步研究了谐振参量光透过率对振荡阈值、抽运光下转换效率、输出功率稳定性的影响, 最终实现了3.13 W的1.57 m和0.85 W的3.84 m参量光输出, 对应斜效率为6.8%和1.9%, 输出功率稳定性分别达到了1.8%和3%.
    Continuous-wave (CW) coherent sources emitting two wavelengths of 1.57 m and 3.84 m have aroused much interest of scientists due to their many applications such as military multiband composite guidance, remote monitoring of the special environment, etc. Quasi-phase matching (QPM) optical parametric oscillator (OPO) device with periodically inverted structure of nonlinear coefficient can implement an efficient and wavelength conversion at arbitrary wavelength in the transparent range of the QPM material. Nowadays, using MgO:PPLN for QPM, various MgO:PPLN-OPOs pumped by conventional 1.06 m laser source can produce 1.57 m and 3.84 m laser and also achieve good results. But as a result of the limitation of momentum conservation condition and periodically poled structure, 1.57 m and 3.84 m laser can only meet a single band. To obtain the two-wavelength laser output at the same time, the MgO:PPLN-OPO could not be applied. In this paper, a CW 1.57 m and 3.84 m intra-cavity multiple optical parametric oscillator based on MgO:APLN is reported. The cross period parameter light is obtained by using a folded type doubly cavity which consists of 1064 nm resonator and multiple optical parametric oscillator. Considering both its thermal stability under high power pump and the light spot mode matching of multiple optical parametric oscillation process, through numerical simulation and theoretical analysis of two sub cavities, the optimum parameters of the cavity structure are determined. On this basis, the influences of output coupler transmittance on oscillation threshold, the down-conversion efficiency, output power stability are investigated in experiment. With T=10% at 1.47 m and 3.3 m output coupler used, the maximum output powers of 3.13 W at 1.57 m and 0.85 W at 3.84 m are obtained, corresponding to slope efficiencies of 6.8% and 1.9%, respectively. The power stabilities are better than 1.8% and 3% at the maximum output power in half an hour. The experimental results show that the intra-cavity multiple optical parametric oscillator based on a single poled crystal MgO:APLN is an effective method of obtaining a 1.57 m and 3.84 m CW laser.
      通信作者: 金光勇, yyjcust@163.com
    • 基金项目: 国家自然科学基金(批准号: 61240004)、吉林省中青年科技领军人才及优秀创新团队培育计划(批准号: 20121815)和吉林省青年科研基金(批准号: 20150520103JH)资助的课题.
      Corresponding author: Jin Guang-Yong, yyjcust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61240004), the Science and Technology Department Project of Jilin Province, China (Grant No. 20121815), and the Natural Science Foundation for Young Scientists of Jilin Province, China (Grant No. 20150520103JH).
    [1]

    Liu T, Wang X B, Liu L, Li X, Hou J 2011 Chin. J. Lasers 38 1202003 (in Chinese) [刘通, 汪晓波, 刘磊, 李霄, 侯静 2011 中国激光 38 1202003]

    [2]

    Lin D J, Alam S, Shen Y H, Chen T, Wu B, Richardson D J 2012 Opt. Express 20 15008

    [3]

    Wu B, Kong J, Shen Y H 2010 Opt. Lett. 35 1118

    [4]

    Peng Y F, Wang W M, Wei X B, Li D M 2009 Opt. Lett. 34 2897

    [5]

    Ding X, Zhang S M, Ma H M, Pang M, Yao J Q, Li Z 2008 Chin. Phys. B 17 211

    [6]

    Ding X, Yao J Q, Yu Y Z, Yu X Y, Xu J J, Zhang G Y 2001 Chin. Phys. 10 725

    [7]

    Miao J G, Pan Y Z, Qu S L 2011 Chin. Phys. Lett. 28 124206

    [8]

    Hemming A, Richards J, Davidson A, Carmody N, Bennetts S, Simakov N, Haub J 2013 Opt. Express 21 10062

    [9]

    Yao B Q, Li G, Zhu G L, Meng P B, Ju Y L, Wang Y Z 2012 Chin. Phys. B 21 034213

    [10]

    Taniguchi H, Yamamoto S, Hirano Y 2001 Mitsubishi Cable Industries Review 98 88

    [11]

    Peng Y F, Wei X B, Wang W M, Li D M 2010 Opt. Commun. 283 4032

    [12]

    Sowade R, Breunig I, Kiessling J, Buse K 2009 Appl. Phys. B 96 25

    [13]

    Kumar S C, Das R, Samanta G K, Zadeh M E 2011 Appl. Phys. B 102 31

    [14]

    Sheng Q, Ding X, Shi C P, Yin S J, Li B, Shang C, Yu X Y, Wen W Q, Yao J Q 2012 Opt. Express 20 8041

    [15]

    Li B, Ding X, Sheng Q, Yin S J, Shi C P, Li X, Yu X Y, Wen W Q, Yao J Q 2012 Chin. Phys. B 21 014207

    [16]

    Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P, Yao J Q 2009 Chin. Phys. B 18 4314

    [17]

    Henderson A, Esquinasi P 2010 Proc. SPIE 7580 75800D

    [18]

    van Herpen M M J W, Bisson S E, Harren F J M 2003 Opt. Lett. 28 2497

    [19]

    Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203 (in Chinese) [于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 044203]

    [20]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 物理学报 57 6987]

    [21]

    L B D 2003 Laser Optics (Beijing: Higher Education Press) p343 (in Chinese) [吕百达 2003 激光光学 (北京: 高等教育出版社) 第343页]

  • [1]

    Liu T, Wang X B, Liu L, Li X, Hou J 2011 Chin. J. Lasers 38 1202003 (in Chinese) [刘通, 汪晓波, 刘磊, 李霄, 侯静 2011 中国激光 38 1202003]

    [2]

    Lin D J, Alam S, Shen Y H, Chen T, Wu B, Richardson D J 2012 Opt. Express 20 15008

    [3]

    Wu B, Kong J, Shen Y H 2010 Opt. Lett. 35 1118

    [4]

    Peng Y F, Wang W M, Wei X B, Li D M 2009 Opt. Lett. 34 2897

    [5]

    Ding X, Zhang S M, Ma H M, Pang M, Yao J Q, Li Z 2008 Chin. Phys. B 17 211

    [6]

    Ding X, Yao J Q, Yu Y Z, Yu X Y, Xu J J, Zhang G Y 2001 Chin. Phys. 10 725

    [7]

    Miao J G, Pan Y Z, Qu S L 2011 Chin. Phys. Lett. 28 124206

    [8]

    Hemming A, Richards J, Davidson A, Carmody N, Bennetts S, Simakov N, Haub J 2013 Opt. Express 21 10062

    [9]

    Yao B Q, Li G, Zhu G L, Meng P B, Ju Y L, Wang Y Z 2012 Chin. Phys. B 21 034213

    [10]

    Taniguchi H, Yamamoto S, Hirano Y 2001 Mitsubishi Cable Industries Review 98 88

    [11]

    Peng Y F, Wei X B, Wang W M, Li D M 2010 Opt. Commun. 283 4032

    [12]

    Sowade R, Breunig I, Kiessling J, Buse K 2009 Appl. Phys. B 96 25

    [13]

    Kumar S C, Das R, Samanta G K, Zadeh M E 2011 Appl. Phys. B 102 31

    [14]

    Sheng Q, Ding X, Shi C P, Yin S J, Li B, Shang C, Yu X Y, Wen W Q, Yao J Q 2012 Opt. Express 20 8041

    [15]

    Li B, Ding X, Sheng Q, Yin S J, Shi C P, Li X, Yu X Y, Wen W Q, Yao J Q 2012 Chin. Phys. B 21 014207

    [16]

    Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P, Yao J Q 2009 Chin. Phys. B 18 4314

    [17]

    Henderson A, Esquinasi P 2010 Proc. SPIE 7580 75800D

    [18]

    van Herpen M M J W, Bisson S E, Harren F J M 2003 Opt. Lett. 28 2497

    [19]

    Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203 (in Chinese) [于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 044203]

    [20]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 物理学报 57 6987]

    [21]

    L B D 2003 Laser Optics (Beijing: Higher Education Press) p343 (in Chinese) [吕百达 2003 激光光学 (北京: 高等教育出版社) 第343页]

  • [1] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [2] 刘航, 于永吉, 王宇恒, 刘贺言, 李渌洁, 金光勇. 基于含时分步积分算法反演单体MgO:APLN多光参量振荡能量场. 物理学报, 2019, 68(24): 244202. doi: 10.7498/aps.68.20190843
    [3] 刘海旭, 侯满宏, 李新胜. X频段连续波100 kW吸收式谐波滤波器研制. 物理学报, 2018, 67(19): 198401. doi: 10.7498/aps.67.20180577
    [4] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [5] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [6] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [7] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:QPLN的多光参量振荡器电场调谐特性理论与实验研究. 物理学报, 2015, 64(16): 164208. doi: 10.7498/aps.64.164208
    [8] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的多光参量振荡器实验研究及其逆转换过程演化分析. 物理学报, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [9] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [10] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [11] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [12] 刘欢, 王巍, 巩马理. 角抽运Nd:YAG复合板条946 nm连续运转激光器 . 物理学报, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [13] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象. 物理学报, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [14] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器. 物理学报, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [15] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [16] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [17] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [18] 耿爱丛, 薄 勇, 毕 勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭 林, 王桂玲, 崔大复, 许祖彦. V型腔腔内和频产生3 W连续波589 nm黄光激光器. 物理学报, 2006, 55(10): 5227-5231. doi: 10.7498/aps.55.5227
    [19] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性. 物理学报, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [20] 邓诚先, 李正佳, 朱长虹. 具有腔内光放大的单共振光参量振荡器. 物理学报, 2005, 54(10): 4754-4760. doi: 10.7498/aps.54.4754
计量
  • 文章访问数:  3294
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-16
  • 修回日期:  2015-06-23
  • 刊出日期:  2015-11-05

基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究

  • 1. 长春理工大学理学院, 吉林省固体激光技术与应用重点实验室, 长春 130022;
  • 2. 长春理工大学理学院工科数学基础教学部, 长春 130022
  • 通信作者: 金光勇, yyjcust@163.com
    基金项目: 国家自然科学基金(批准号: 61240004)、吉林省中青年科技领军人才及优秀创新团队培育计划(批准号: 20121815)和吉林省青年科研基金(批准号: 20150520103JH)资助的课题.

摘要: 报道了一种基于MgO:APLN实现1.57 m和3.84 m跨周期参量光连续输出的内腔抽运多光参量振荡器. 采用1064 nm谐振腔与多光参量振荡腔折叠型复合结构, 综合考虑高功率抽运下谐振腔的热稳定性及多光参量振荡过程的光斑模式匹配, 通过对两个子腔谐振结构的数值模拟分析, 确定了最佳腔型参数. 在此基础上, 进一步研究了谐振参量光透过率对振荡阈值、抽运光下转换效率、输出功率稳定性的影响, 最终实现了3.13 W的1.57 m和0.85 W的3.84 m参量光输出, 对应斜效率为6.8%和1.9%, 输出功率稳定性分别达到了1.8%和3%.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回