搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响

宋庆功 秦国顺 杨宝宝 蒋清杰 胡雪兰

引用本文:
Citation:

杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响

宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰

Impurity concentration effects on the structures, ductile and electronic properties of Zr-doped gamma-TiAl alloys

Song Qing-Gong, Qin Guo-Shun, Yang Bao-Bao, Jiang Qing-Jie, Hu Xue-Lan
PDF
导出引用
  • 以Zr替代Ti(或Al)掺杂-TiAl体系为研究对象, 掺杂浓度(摩尔比)分别为1/54, 1/36, 1/24和1/16. 采用基于密度泛函理论的第一性原理方法, 计算研究了Zr掺杂-TiAl体系的晶体结构及其稳定性、延性和电子性质等. 结果显示, Zr替位掺杂, 可以改变-TiAl基合金的结构对称性. 计算的形成能表明, Zr替代Ti原子会使体系的形成能降低, 而Zr替代Al原子会使体系的形成能增加. 因而, 在掺入-TiAl时, Zr更倾向于替代Ti 原子, 但是Zr替代Al原子也具有一定的可能性, 从而会产生多样的掺杂体系, 对于改善合金的性质具有重要意义. 对各个体系轴比的计算与分析表明, 当掺杂浓度为1.85 at%6.25 at% 时, Zr替代Al原子会使体系的轴比减小、接近于1, 从而改善合金的延性效果明显. 能带结构显示各个Zr掺杂-TiAl体系均具有金属导电性. 对电子态密度和布居数的分析表明, Zr替代Al原子后, Zr与其邻近Ti原子的共价键结合强度大为降低, 导致合金体系中的Ti-Al(Zr)键的平均强度明显减弱, 金属键增强, 这是改善-TiAl合金延性的重要因素.
    This investigation aims at the Zr-doping in -TiAl alloy systems in which Ti (or Al) atoms are partly replaced and the impurity concentrations are 1/54, 1/36, 1/24 and 1/16 (molar ratio), respectively. The structural, energy, plastic and electronic properties of the alloys are calculated and studied by using the first-principles method based on the density functional theory and other physical theory. From geometry optimization results it is shown that doping with Zr can change the structural symmetry of the -TiAl systems. These results also suggest that the cubic degree of Zr-doped -TiAl alloys can be increased due to the Zr-substitution. For instance, the cubic degrees of Ti12Al11Zr and Ti18Al17Zr systems are enhanced distinctly, which are positive for improving the mechanical properties of the alloys. The average formation energies obtained indicate that the Ti atom replaced by Zr can slightly decrease the formation energy of the system (0.003 eV/atom); while Zr substituting the Al atom can increase the formation energies of the systems (0.07 eV/atom). Accordingly, when Zr atoms are introduced in the -TiAl system, they tend to substitute Ti atoms, and can also substitute Al atoms with a certain possibility. Thus, various Zr-doped -TiAl regions can be produced in the system. The integral effects are of significance for improving the performance of the -TiAl based alloys by means of Zr-doping method. Comparing the axial ratios of Zr-doped -TiAl systems with that of pure -TiAl system, we find that Zr substituting Al atom can reduce the axial ratio of the Zr-doped alloys, which is responsible for the ductility of the materials. It should be mentioned that when the impurity concentration is in the range of 1.85 at%-6.25 at%, the doping effect will be most distinct and the axial ratio of the alloys is close to unity. It is expected that the Ti12Al11Zr system has a good ductility for its axial ratio equals to 1.007. The band structures of Zr-doped -TiAl systems show that they all have metallic conductivities. After Zr atom substitutes the Al atom in the -TiAl system, the intensity of covalent bond between Zr atom and its nearest neighbour Ti atoms in Ti12Al11Zr system reduces evidently and the bond length increases (0.032 ), which is indicated by the obtained overlap population (decrease by 0.21) and the densities of states in the Zr-doped and pure -TiAl systems. These results in the decrease of average intensity of Ti-Al(Zr) bonds and the increase of metallic bonds in Ti12Al11Zr system, which is an important factor for improving the ductility of -TiAl based alloys.
      通信作者: 宋庆功, qgsong@cauc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51201181)资助的课题.
      Corresponding author: Song Qing-Gong, qgsong@cauc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51201181).
    [1]

    Kunal K, Ramachandran R, Norman M W 2012 Prog. Aerosp. Sci. 55 01

    [2]

    Helmut C, Svea M 2013 Adv. Eng. Mater. 15 191

    [3]

    Peng C Q, Huang B Y, He Y H 1998 Chin. J. Nonferr. Met. 8 11 (in Chinese) [彭超群, 黄伯云, 贺跃辉 1998 中国有色金属学报 8 11]

    [4]

    Lin J P, Zhang L Q, Song X P, Ye F, Chen G L 2010 Mater. China 29 1 (in Chinese) [林均品, 张来启, 宋西平, 叶丰, 陈国良 2010 中国材料进展 29 1]

    [5]

    Liu D, Zhang L J, Mi L, Guo K, Xue X Y 2014 Prog. Tita. 31 11 (in Chinese) [刘娣, 张利军, 米磊, 郭凯, 薛祥义 2014 钛工业进展 31 11]

    [6]

    Gilchrist A, Pollock T M 2001 Structural Intermetallics 2001 (Jackson Hole: TMS) p3

    [7]

    Liu C T, Kim Y W 1992 Scr. Metall. Mater. 27 599

    [8]

    Li J S, Zhang T B, Chang H, Kou H C, Zhou L 2010 Mater. China 29 1 (in Chinese) [李金山, 张铁邦, 常辉, 寇宏超, 周廉 2010 中国材料进展 29 1]

    [9]

    Shu S L, Qiu F, Tong C Z, Shan X N, Jiang Q C 2014 J. Alloys Compd. 617 302

    [10]

    Stroosmijder M F, Zheng N, Quadakkers W J, Hofman R, Gil A, Lanza A 1996 Oxid. Met. 46 19

    [11]

    Hao Y L, Yang R, Cui Y Y 2000 Acta Mater. 48 1313

    [12]

    Hu Q M, Vitos L, Yang R 2014 Phys. Rev. B 90 4109

    [13]

    Gouda M K, Nakamura K, Gepreel M A H 2015 J. Appl. Phys. 117 4905

    [14]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese) [党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [15]

    Chen L 2010 J. Xinyang Normal Univ. 23 57 (in Chinese) [陈律 2010 信阳师范学院学报 23 57]

    [16]

    Liu X K, Zheng Z, Liu C, Lan X H, Yin W 2012 Mater. Rev. 26 115 (in Chinese) [刘显坤, 郑洲, 刘聪, 兰晓华, 尹伟 2012 材料导报 26 115]

    [17]

    Song Q G, Yan H Y, Kang J H, Song L L, Guo F J 2014 Mater. Rev. 28 150 (in Chinese) [宋庆功, 闫洪洋, 康建海, 宋玲玲, 果福娟 2014 材料导报 28 150]

    [18]

    Song Q G, Yan H Y, Guo F J, Xu T Y, Kang J H, Hu X L 2014 J. Func. Mater. 19 149 (in Chinese) [宋庆功, 闫洪洋, 果福娟, 徐霆耀, 康建海, 胡雪兰 2014 功能材料 19 149]

    [19]

    Kastenhuber M, Rashkova B, Clemens H, Mayer S 2015 Intermetallics 63 19

    [20]

    Klein T, Schachermayer M, Mendez-Martin F, Schoberl T, Rashkova B, Clemens H, Mayer S 2015 Acta Mater. 94 205

    [21]

    Jiang M L 2014 M. S. Dissertation (Changsha: Zhongnan University) (in Chinese) [蒋孟玲 2014 硕士学位论文(长沙: 中南大学)]

    [22]

    Liu Z C, Lin J P, Li S J, Chen G L 2002 Intermetallics 10 653

    [23]

    Liu Y L, Li H, Wang S Q, Ye H Q 2009 J. Mater. Res. 24 3165

    [24]

    Qiu C Z, Liu Y, Huang L, Zhang W, Liu B, Lu B 2012 T. Nonferr. Metal Soc. 22 521

    [25]

    Hodge A M, Hsiung L M, Nieh T G 2004 Scripta Mater. 51 411

    [26]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese) [李虹, 王绍青, 叶恒强 2009 物理学报 58 S224]

    [27]

    Huang Y Y, Wu W M, Deng W, Zhong X P, Xiong L Y, Cao M Z, Long Q W 2000 Chin. J. Nonferr. Met. 10 796 (in Chinese) [黄宇阳, 吴伟明, 邓文, 钟夏平, 熊良钺, 曹名洲, 龙期威 2000 中国有色金属学报 10 796]

    [28]

    Liu X K, Liu C, Zheng Z, Lan X H 2013 Chin. Phys. B 22 087102

    [29]

    Chen G L, Lin J P 1999 Physicalmetallurgy Basis of Ordered Intermetallic Compound Structure Materials (Beijing:Metallurgical Industry Press) p285 (in Chinese) [陈国良, 林均品 1999 有序金属间化合物结构材料物理金属学基础 (北京: 冶金工业出版社) 第285页]

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Hao J M, Wen Y L, Zhang S M 1995 J. Appl. Sci. 04 400 (in Chinese) [郝建民, 温业礼, 张世敏 1995 应用科学学报 04 400]

    [32]

    Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141

    [33]

    Shang J X, Yu T B 2009 Acta Phys. Sin. 58 1179 (in Chinese) [尚家香, 于潭波 2009 物理学报 58 1179]

    [34]

    Speight J G 2005 Lange's Handbook of Chemistry (16th Ed.) (Boston: McGraw-Hill Professional) Table 1.31

    [35]

    Xu J H, Freeman A J 1989 Phys. Rev. B 40 11927

    [36]

    Carlsson A E, Meschter P J 1989 J. Mater. Res. 4 1060

  • [1]

    Kunal K, Ramachandran R, Norman M W 2012 Prog. Aerosp. Sci. 55 01

    [2]

    Helmut C, Svea M 2013 Adv. Eng. Mater. 15 191

    [3]

    Peng C Q, Huang B Y, He Y H 1998 Chin. J. Nonferr. Met. 8 11 (in Chinese) [彭超群, 黄伯云, 贺跃辉 1998 中国有色金属学报 8 11]

    [4]

    Lin J P, Zhang L Q, Song X P, Ye F, Chen G L 2010 Mater. China 29 1 (in Chinese) [林均品, 张来启, 宋西平, 叶丰, 陈国良 2010 中国材料进展 29 1]

    [5]

    Liu D, Zhang L J, Mi L, Guo K, Xue X Y 2014 Prog. Tita. 31 11 (in Chinese) [刘娣, 张利军, 米磊, 郭凯, 薛祥义 2014 钛工业进展 31 11]

    [6]

    Gilchrist A, Pollock T M 2001 Structural Intermetallics 2001 (Jackson Hole: TMS) p3

    [7]

    Liu C T, Kim Y W 1992 Scr. Metall. Mater. 27 599

    [8]

    Li J S, Zhang T B, Chang H, Kou H C, Zhou L 2010 Mater. China 29 1 (in Chinese) [李金山, 张铁邦, 常辉, 寇宏超, 周廉 2010 中国材料进展 29 1]

    [9]

    Shu S L, Qiu F, Tong C Z, Shan X N, Jiang Q C 2014 J. Alloys Compd. 617 302

    [10]

    Stroosmijder M F, Zheng N, Quadakkers W J, Hofman R, Gil A, Lanza A 1996 Oxid. Met. 46 19

    [11]

    Hao Y L, Yang R, Cui Y Y 2000 Acta Mater. 48 1313

    [12]

    Hu Q M, Vitos L, Yang R 2014 Phys. Rev. B 90 4109

    [13]

    Gouda M K, Nakamura K, Gepreel M A H 2015 J. Appl. Phys. 117 4905

    [14]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese) [党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [15]

    Chen L 2010 J. Xinyang Normal Univ. 23 57 (in Chinese) [陈律 2010 信阳师范学院学报 23 57]

    [16]

    Liu X K, Zheng Z, Liu C, Lan X H, Yin W 2012 Mater. Rev. 26 115 (in Chinese) [刘显坤, 郑洲, 刘聪, 兰晓华, 尹伟 2012 材料导报 26 115]

    [17]

    Song Q G, Yan H Y, Kang J H, Song L L, Guo F J 2014 Mater. Rev. 28 150 (in Chinese) [宋庆功, 闫洪洋, 康建海, 宋玲玲, 果福娟 2014 材料导报 28 150]

    [18]

    Song Q G, Yan H Y, Guo F J, Xu T Y, Kang J H, Hu X L 2014 J. Func. Mater. 19 149 (in Chinese) [宋庆功, 闫洪洋, 果福娟, 徐霆耀, 康建海, 胡雪兰 2014 功能材料 19 149]

    [19]

    Kastenhuber M, Rashkova B, Clemens H, Mayer S 2015 Intermetallics 63 19

    [20]

    Klein T, Schachermayer M, Mendez-Martin F, Schoberl T, Rashkova B, Clemens H, Mayer S 2015 Acta Mater. 94 205

    [21]

    Jiang M L 2014 M. S. Dissertation (Changsha: Zhongnan University) (in Chinese) [蒋孟玲 2014 硕士学位论文(长沙: 中南大学)]

    [22]

    Liu Z C, Lin J P, Li S J, Chen G L 2002 Intermetallics 10 653

    [23]

    Liu Y L, Li H, Wang S Q, Ye H Q 2009 J. Mater. Res. 24 3165

    [24]

    Qiu C Z, Liu Y, Huang L, Zhang W, Liu B, Lu B 2012 T. Nonferr. Metal Soc. 22 521

    [25]

    Hodge A M, Hsiung L M, Nieh T G 2004 Scripta Mater. 51 411

    [26]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese) [李虹, 王绍青, 叶恒强 2009 物理学报 58 S224]

    [27]

    Huang Y Y, Wu W M, Deng W, Zhong X P, Xiong L Y, Cao M Z, Long Q W 2000 Chin. J. Nonferr. Met. 10 796 (in Chinese) [黄宇阳, 吴伟明, 邓文, 钟夏平, 熊良钺, 曹名洲, 龙期威 2000 中国有色金属学报 10 796]

    [28]

    Liu X K, Liu C, Zheng Z, Lan X H 2013 Chin. Phys. B 22 087102

    [29]

    Chen G L, Lin J P 1999 Physicalmetallurgy Basis of Ordered Intermetallic Compound Structure Materials (Beijing:Metallurgical Industry Press) p285 (in Chinese) [陈国良, 林均品 1999 有序金属间化合物结构材料物理金属学基础 (北京: 冶金工业出版社) 第285页]

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Hao J M, Wen Y L, Zhang S M 1995 J. Appl. Sci. 04 400 (in Chinese) [郝建民, 温业礼, 张世敏 1995 应用科学学报 04 400]

    [32]

    Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141

    [33]

    Shang J X, Yu T B 2009 Acta Phys. Sin. 58 1179 (in Chinese) [尚家香, 于潭波 2009 物理学报 58 1179]

    [34]

    Speight J G 2005 Lange's Handbook of Chemistry (16th Ed.) (Boston: McGraw-Hill Professional) Table 1.31

    [35]

    Xu J H, Freeman A J 1989 Phys. Rev. B 40 11927

    [36]

    Carlsson A E, Meschter P J 1989 J. Mater. Res. 4 1060

  • [1] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [4] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质. 物理学报, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [5] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [6] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究. 物理学报, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [7] 阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪. BnY(n=1–11)团簇的结构和电子性质. 物理学报, 2014, 63(24): 243101. doi: 10.7498/aps.63.243101
    [8] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [9] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [10] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [11] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [12] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究. 物理学报, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [13] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [14] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [17] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [18] 毛华平, 王红艳, 朱正和, 唐永建. AunY(n=1—9)掺杂团簇的结构和电子性质研究. 物理学报, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [19] 徐 敏, 沈 雯, 高 瞻, 赵良磊, 姜 蓓, 杨 磊, 张澜庭. La0.4FeCo3Sb12晶体结构的x射线和电子衍射表征. 物理学报, 2005, 54(7): 3302-3306. doi: 10.7498/aps.54.3302
    [20] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
计量
  • 文章访问数:  3944
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-18
  • 修回日期:  2015-11-29
  • 刊出日期:  2016-02-05

杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响

  • 1. 中国民航大学理学院, 低维材料与技术研究所, 天津 300300;
  • 2. 中国民航大学中欧航空工程师学院, 天津 300300
  • 通信作者: 宋庆功, qgsong@cauc.edu.cn
    基金项目: 国家自然科学基金(批准号: 51201181)资助的课题.

摘要: 以Zr替代Ti(或Al)掺杂-TiAl体系为研究对象, 掺杂浓度(摩尔比)分别为1/54, 1/36, 1/24和1/16. 采用基于密度泛函理论的第一性原理方法, 计算研究了Zr掺杂-TiAl体系的晶体结构及其稳定性、延性和电子性质等. 结果显示, Zr替位掺杂, 可以改变-TiAl基合金的结构对称性. 计算的形成能表明, Zr替代Ti原子会使体系的形成能降低, 而Zr替代Al原子会使体系的形成能增加. 因而, 在掺入-TiAl时, Zr更倾向于替代Ti 原子, 但是Zr替代Al原子也具有一定的可能性, 从而会产生多样的掺杂体系, 对于改善合金的性质具有重要意义. 对各个体系轴比的计算与分析表明, 当掺杂浓度为1.85 at%6.25 at% 时, Zr替代Al原子会使体系的轴比减小、接近于1, 从而改善合金的延性效果明显. 能带结构显示各个Zr掺杂-TiAl体系均具有金属导电性. 对电子态密度和布居数的分析表明, Zr替代Al原子后, Zr与其邻近Ti原子的共价键结合强度大为降低, 导致合金体系中的Ti-Al(Zr)键的平均强度明显减弱, 金属键增强, 这是改善-TiAl合金延性的重要因素.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回