搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光

谢仕永 张小富 杨程亮 乐小云 薄勇 崔大复 许祖彦

引用本文:
Citation:

周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光

谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦

Continuous-wave single-frequency 589 nm yellow laser generated from sum frequency of single-block non-planar ring cavity laser in periodically poled KTiOPO4 crystal

Xie Shi-Yong, Zhang Xiao-Fu, Yang Cheng-Liang, Le Xiao-Yun, Bo Yong, Cui Da-Fu, Xu Zu-Yan
PDF
导出引用
  • 单次通过周期极化KTiOPO4晶体和频单块非平面环形腔1064 nm与1319 nm激光产生连续单频589 nm黄光. 通过琼斯矩阵模拟计算对单块非平面Nd:YAG晶体参数进行了优化设计, 实验获得1080 mW和580 mW的连续单频1064 nm和1319 nm激光输出. 两束激光单次通过周期极化KTiOPO4晶体和频产生14.8 mW, M2=1.14的589 nm黄光, 相应的和频效率为0.9%. 研究了周期极化KTiOPO4温度对和频效率的影响, 得到其温度接收带宽为1.5℃. 通过改变1064 nm Nd:YAG晶体的温度可实现589 nm黄光波长精确对应钠原子D2a吸收谱线, 调谐精度达到0.164 pm.
    Continuous-wave single-frequency 589 nm yellow laser can be used in laser cooling of sodium atoms. Besides, the interaction between 589 nm laser and sodium atoms can be studied by resonance fluorescence, which provides an important basis for the sodium guide star in the adaptive optics. In this paper, single frequency 589 nm yellow light is generated by sum frequency of single-block non-planar ring cavity 1064 nm and 1319 nm laser in periodically poled KTiOPO4 crystal. The geometric parameters of single-block non-planar Nd:YAG crystal and magnetic field intensity are optimally designed by simulation calculation through using Jones matrix. The output powers 1080 mW and 580 mW are obtained for continuous-wave single-frequency 1064 nm and 1319 nm laser in the experiment, respectively The two fundamental beams are expanded to be the same as perfectly as possible in size and are focused into a spot with a size of about 60 m by an achromatic lens. The sum-frequency generation takes place in a 1 mm2 mm20 mm phase-matched type-I periodically poled KTiOPO4 crystal with a matching temperature of 55℃ and polarization period of 12.35 m The crystal is anti-reflection coated for all three wavelengths (1064 nm, 1319 nm and 589 nm). A 14.8 mW output of 589 nm laser is obtained with beam quality factor M2=1.14 and the corresponding sum-frequency efficiency is 0.9%. The influence of periodically poled KTiOPO4 temperature on the sum-frequency efficiency is studied and the temperature acceptance bandwidth is measured to be 1.5 degrees The wavelength of 589 nm yellow light can be tuned to the sodium atom D2a absorption line by changing the temperature of 1064 nm Nd:YAG crystal and 0.164 pm of tuning accuracy is reached. The whole laser system is stable and reliable, so it provides a practical and effective technical means to obtain the continuous-wave single-frequency 589 nm laser, for it is relatively simple and easy to implement.
      通信作者: 张小富, xfzhang@buaa.edu.cn
    • 基金项目: 应用光学国家重点实验室资助的课题.
      Corresponding author: Zhang Xiao-Fu, xfzhang@buaa.edu.cn
    • Funds: Project supported by the State Key Laboratory of Applied Optics.
    [1]

    Lin Z F, Zhang Y S, Gao C Q, Gao M W 2009 Acta Phys. Sin. 58 1690 (in Chinese) [林志锋, 张云山, 高春清, 高明伟 2009 物理学报 58 1690]

    [2]

    Stothard D J M, Lindsay I D, Dunn M H 2004 Opt. Express 12 502

    [3]

    Brandi F, Velchev I, Neshev D, Hogervorst W, Ubachs W 2003 Rev. Sci. Instrum. 74 32

    [4]

    Okhapkin M V, Skvortson M N, Belkin A M, Kvashnin N L, Bagayev S N 2002 Opt. Commun. 203 359

    [5]

    Xie S Y, Lu Y F, Bo Y, Cui Q J, Xu Y T, Xu J L, Peng Q J, Cui D F, Xu Z Y 2009 Acta Phys. Sin. 58 4660 (in Chinese) [谢仕永, 鲁远甫, 薄勇, 崔前进, 徐一汀, 许家林, 彭钦军, 崔大复, 许祖彦 2009 物理学报 58 4660]

    [6]

    Phillips D W 1998 Rev. Modern Phys. 70 721

    [7]

    Zhang S P 2013 M. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [张绍鹏 2013 硕士学位论文(长沙: 国防科学技术大学)]

    [8]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 94208

    [9]

    Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202

    [10]

    Liu J, Wang J L, L T Y, Sun J W, Dong L 2014 Opt. Prec. Engineer. 22 3199 (in Chinese) [刘杰, 王建立, 吕天宇, 孙敬伟, 董磊 2014 光学精密工程 22 3199]

    [11]

    Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219

    [12]

    Denman C A, Hillman P D, Moore G T, Telle J M, Preston J E, Drummond J D, Fugate R Q 2005 Proc. SPIE 5707 46

    [13]

    Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 19021

    [14]

    Taylor L R, Feng Y, Calia D B 2010 Opt. Express 18 8540

    [15]

    Kane T J, Byer R L 1985 Opt. Lett. 10 65

    [16]

    Kane T J, Cheng E A P 1988 Opt. Lett. 13 970

    [17]

    Gao C Q, Gao M W, Lin Z F, Zhang Y S, Zhang X Y, Zhu L N 2009 Chin. J. Lasers 36 1704 (in Chinese) [高春清, 高明伟, 林志锋, 张云山, 张秀勇, 朱凌妮 2009 中国激光 36 1704]

    [18]

    Fang D 2007 M. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [方丹 2007 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [19]

    Gong K, Wu K Y, He S F 2009 Acta Photon. Sin. 38 3049 (in Chinese) [巩轲, 吴克瑛, 何淑芳 2009 光子学报 38 3049]

  • [1]

    Lin Z F, Zhang Y S, Gao C Q, Gao M W 2009 Acta Phys. Sin. 58 1690 (in Chinese) [林志锋, 张云山, 高春清, 高明伟 2009 物理学报 58 1690]

    [2]

    Stothard D J M, Lindsay I D, Dunn M H 2004 Opt. Express 12 502

    [3]

    Brandi F, Velchev I, Neshev D, Hogervorst W, Ubachs W 2003 Rev. Sci. Instrum. 74 32

    [4]

    Okhapkin M V, Skvortson M N, Belkin A M, Kvashnin N L, Bagayev S N 2002 Opt. Commun. 203 359

    [5]

    Xie S Y, Lu Y F, Bo Y, Cui Q J, Xu Y T, Xu J L, Peng Q J, Cui D F, Xu Z Y 2009 Acta Phys. Sin. 58 4660 (in Chinese) [谢仕永, 鲁远甫, 薄勇, 崔前进, 徐一汀, 许家林, 彭钦军, 崔大复, 许祖彦 2009 物理学报 58 4660]

    [6]

    Phillips D W 1998 Rev. Modern Phys. 70 721

    [7]

    Zhang S P 2013 M. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [张绍鹏 2013 硕士学位论文(长沙: 国防科学技术大学)]

    [8]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 94208

    [9]

    Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202

    [10]

    Liu J, Wang J L, L T Y, Sun J W, Dong L 2014 Opt. Prec. Engineer. 22 3199 (in Chinese) [刘杰, 王建立, 吕天宇, 孙敬伟, 董磊 2014 光学精密工程 22 3199]

    [11]

    Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219

    [12]

    Denman C A, Hillman P D, Moore G T, Telle J M, Preston J E, Drummond J D, Fugate R Q 2005 Proc. SPIE 5707 46

    [13]

    Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 19021

    [14]

    Taylor L R, Feng Y, Calia D B 2010 Opt. Express 18 8540

    [15]

    Kane T J, Byer R L 1985 Opt. Lett. 10 65

    [16]

    Kane T J, Cheng E A P 1988 Opt. Lett. 13 970

    [17]

    Gao C Q, Gao M W, Lin Z F, Zhang Y S, Zhang X Y, Zhu L N 2009 Chin. J. Lasers 36 1704 (in Chinese) [高春清, 高明伟, 林志锋, 张云山, 张秀勇, 朱凌妮 2009 中国激光 36 1704]

    [18]

    Fang D 2007 M. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [方丹 2007 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [19]

    Gong K, Wu K Y, He S F 2009 Acta Photon. Sin. 38 3049 (in Chinese) [巩轲, 吴克瑛, 何淑芳 2009 光子学报 38 3049]

  • [1] 安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴. 国产长锥形光纤实现400 W单频单模激光输出. 物理学报, 2021, 70(20): 204204. doi: 10.7498/aps.70.20210682
    [2] 张旭东, 储玉喜, 贾威, 胡明列. 基于基频放大的紫外皮秒355 nm输出效率提升系统. 物理学报, 2019, 68(20): 200601. doi: 10.7498/aps.68.20190876
    [3] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究. 物理学报, 2016, 65(7): 074202. doi: 10.7498/aps.65.074202
    [4] 闫晓娟, 马维光, 谭巍. 外腔共振和频系统中阻抗匹配的理论研究. 物理学报, 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [5] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [6] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量. 物理学报, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [7] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究 . 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [8] 许将明, 冷进勇, 韩凯, 周朴, 侯静. 单频光纤拉曼放大器的实验研究. 物理学报, 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [9] 李斌, 姚建铨, 丁欣, 王鹏, 张帆. 激光二极管抽运共轴双晶体黄光激光器. 物理学报, 2011, 60(2): 024208. doi: 10.7498/aps.60.024208
    [10] 漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪. 128 W单频线偏振光纤放大器特性研究. 物理学报, 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [11] 萧寒, 唐驾时, 梁翠香. 单频外激励弹簧摆的鞍结分岔控制. 物理学报, 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [12] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器. 物理学报, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [13] 焦荣珍, 冯晨旭, 马海强. 1.55 μm升频单光子探测量子密钥分配系统的性能研究. 物理学报, 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [14] 耿爱丛, 薄 勇, 毕 勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭 林, 王桂玲, 崔大复, 许祖彦. V型腔腔内和频产生3 W连续波589 nm黄光激光器. 物理学报, 2006, 55(10): 5227-5231. doi: 10.7498/aps.55.5227
    [15] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [16] 甘琛利, 张彦鹏, 冯 宇, 余孝军, 汪 杰, 李创社, 宋建平, 卢克清, 侯 洵. 阿秒极化拍的V型三能级对称二阶相干理论. 物理学报, 2005, 54(2): 726-735. doi: 10.7498/aps.54.726
    [17] 李瑞宁, 来引娟, 马小涛. 激光二极管抽运Nd∶YVO4和KTP倍频产生单频绿光激发器. 物理学报, 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [18] 张连水, 李云静, 李晓苇, 傅广生. 碘分子单频及双频多光子光谱. 物理学报, 1997, 46(6): 1088-1095. doi: 10.7498/aps.46.1088
    [19] 陆埮, 蒋家禹, 龚大为, 孙恒慧. 单频导纳谱法测量锗硅量子阱的能带偏移. 物理学报, 1994, 43(2): 289-296. doi: 10.7498/aps.43.289
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热. 物理学报, 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
计量
  • 文章访问数:  3532
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-16
  • 修回日期:  2016-01-18
  • 刊出日期:  2016-05-05

周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光

  • 1. 北京航空航天大学物理科学与核能工程学院, 北京 100191;
  • 2. 中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室, 长春 130033;
  • 3. 中国科学院理化技术研究所, 激光物理与技术研究中心, 北京 100190
  • 通信作者: 张小富, xfzhang@buaa.edu.cn
    基金项目: 应用光学国家重点实验室资助的课题.

摘要: 单次通过周期极化KTiOPO4晶体和频单块非平面环形腔1064 nm与1319 nm激光产生连续单频589 nm黄光. 通过琼斯矩阵模拟计算对单块非平面Nd:YAG晶体参数进行了优化设计, 实验获得1080 mW和580 mW的连续单频1064 nm和1319 nm激光输出. 两束激光单次通过周期极化KTiOPO4晶体和频产生14.8 mW, M2=1.14的589 nm黄光, 相应的和频效率为0.9%. 研究了周期极化KTiOPO4温度对和频效率的影响, 得到其温度接收带宽为1.5℃. 通过改变1064 nm Nd:YAG晶体的温度可实现589 nm黄光波长精确对应钠原子D2a吸收谱线, 调谐精度达到0.164 pm.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回