搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于基频放大的紫外皮秒355 nm输出效率提升系统

张旭东 储玉喜 贾威 胡明列

引用本文:
Citation:

基于基频放大的紫外皮秒355 nm输出效率提升系统

张旭东, 储玉喜, 贾威, 胡明列

Ultraviolet picosecond conversion efficiency improvement system at 355 nm based on fundamental frequency laser amplified

Zhang Xu-Dong, Chu Yu-Xi, Jia Wei, Hu Ming-Lie
PDF
HTML
导出引用
  • 在腔外和频获得紫外355 nm皮秒激光输出的过程中, 和频晶体的长度是影响转换效率的重要因素. 和频过程的激光输入参数和晶体吸收系数都会影响和频晶体的最适长度选取. 目前缺乏对于腔外和频产生紫外355 nm激光过程中输入激光光子数配比以及晶体吸收对于和频晶体最适长度影响的研究. 本文基于三波耦合方程进行了理论推导和数值模拟, 讨论了不同入射条件下最高和频效率的稳态解, 分析了不同光子数配比以及LiB3O5晶体吸收对于最适和频晶体长度的影响, 提出了放大基频光同时缩短晶体长度并提高转换效率的方案. 在该方案中, 将1064 nm皮秒基频光在倍频产生532 nm二次谐波后进行分离放大, 再与532 nm倍频光在LiB3O5晶体内进行和频, 从而产生紫外355 nm皮秒激光输出. 模拟结果表明, 通过基频放大改变和频过程中的光子数配比, 可以缩短取得最高转换效率的和频晶体最适长度, 同时减少和频晶体对于355 nm激光的吸收和走离影响, 输出功率较传统方案提升40%以上, 从而获得了高效率紫外355 nm皮秒激光输出.
    In recent years, picosecond laser in ultraviolet (UV) has manifested great importance for applications both in science and industry, such as biomedical research, micro machining, etc. Now, the well proven approach to generating ultra-short UV pulses is extra-cavity frequency conversion based on nonlinear optical (NLO) crystal, due to the lack of suitable laser sources directly generating UV laser. In this process of harmonic generation, the length of nonlinear crystal is an important factor affecting the conversion efficiency and beam-quality. The optimal length of the nonlinear crystal is influenced by incident laser parameters and crystal absorption coefficient. At present, for the UV 355 nm picosecond laser generated from extra-cavity sum frequency, published are few reports about detailed analysis and research on the influence of photon ratio of the incident laser beams and nonlinear crystal absorption on optimal length of sum frequency crystal. In this paper, the steady-state solutions with the highest conversion efficiency under different incident conditions are obtained by theoretical analysis and numerical simulation of the three waves coupling equations. The effects of different photon ratios and absorption effect of the sum frequency crystal on the optimum crystal length are analyzed. We propose a solution based on the fundamental frequency laser amplified to shorten crystal length and improve conversion efficiency. In this scheme, the 532 nm second harmonic laser with a high conversion efficiency over 65% can be achieved by LiB3O5 crystal. After that, the 1064 nm fundamental frequency laser is separated from the second harmonic laser, and then it is amplified by the Nd:YVO4 laser crystal pumped by an 808 nm laser diode. Finally, the ultraviolet 355 nm picosecond laser is obtained by combining the 1064 nm fundamental frequency laser with the 532 nm second harmonic laser in the LiB3O5 crystal. The simulation results show that the incident photon ratio of the sum frequency reaction can be changed by amplifying the residual fundamental frequency laser, and the optimum length of the sum-frequency crystal corresponding to the highest conversion efficiency can be shortened. Meanwhile, the absorption and walk-away effect of the sum frequency crystal can be also reduced. The final 355 nm laser output power can be increased more than 40 percent compared with the traditional scheme of early reports. In consequence, the high sum frequency conversion efficiency of the UV 355 nm picosecond laser can be obtained by changing the photo ratio of the incident laser beams through amplifying the fundamental frequency laser.
      通信作者: 储玉喜, chuyuxi@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805174, 61535009, 61827821, 61377041, 11527808)
      Corresponding author: Chu Yu-Xi, chuyuxi@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805174, 61535009, 61827821, 61377041, 11527808)
    [1]

    Klein-Wiele J H, Bekesi J, Simon P 2004 Appl. Phys. A: Mater. Sci. Process. 79 775Google Scholar

    [2]

    Chen T C, Darling R B 2008 J. Mater. Process. Technol. 198 248Google Scholar

    [3]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [4]

    Gray R J, Yuan X H, Carroll D C, Brenner C M, Coury M, Quinn M N, Tresca O, Zielbauer B, Aurand B, Bagnoud V, Fils J, Kühl T, Lin X X, Li C, Li Y T, Roth M, Neely D, McKenna P 2011 Appl. Phys. Lett. 99 171502Google Scholar

    [5]

    Raith A, Perkins W T, Pearce N J G, Jeffries T E 1996 Fresenius' J. Anal. Chem. 355 789

    [6]

    Ubachs W, Eikema K S E, Hogervorst W, Cacciani P C 1997 J. Opt. Soc. Am. B 14 2469Google Scholar

    [7]

    Francis A L, Warner J W, Telfair W B, Yoder P R, Martin C A 1989 Arch. Ophthalmol. 107 131Google Scholar

    [8]

    Sharp D G 1939 J. Bacteriol. 37 447

    [9]

    Rastogi V K, Wallace L, Smith L S 2007 Mil. Med. 172 1166Google Scholar

    [10]

    Craxton R S 1980 Opt. Commun. 34 474Google Scholar

    [11]

    Hodgson N, Dudley D, Gruber L, Jordan W, Hoffman H 2001 Summaries of papers presented at the Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 11, 2001 p389

    [12]

    Wang C X, Wang G Y, Hicks A V, Dudley D R, Pang H Y, Hodgson N 2006 Solid State Lasers XV: Technology and Devices (Vol. 6100) (San Francisco: SPIE) p610019

    [13]

    Zhu P, Li D, Liu Q, Chen J, Fu S, Shi P, Du K, Loosen P 2013 Opt. Lett. 38 4716Google Scholar

    [14]

    Yap Y K, Inagaki M, Nakajima S, Mori Y, Sasaki T 1996 Opt. Lett. 21 1348Google Scholar

    [15]

    Zhang J, Wang L, Wu Y, Wang G, Fu P, Wu Y 2011 Opt. Express 19 16722Google Scholar

    [16]

    Zhang J, Wang L, Li Y, Wang G, Zhang G, Wu Y 2012 Opt. Express 20 16490Google Scholar

    [17]

    Li K, Zhang L, Xu D, Zhang G, Yu H, Wang Y, Shan F, Wang L 2014 Opt. Lett. 39 3305Google Scholar

    [18]

    尤晨华, 范琦康, 陆祖康, 尤桂铭 1989 光学学报 9 401Google Scholar

    You C H, Fan Q K, Lu Z Q, You G M 1989 Acta Opt. Sin. 9 401Google Scholar

    [19]

    Ueda K, Orii Y, Takahashi Y, Okada G, Mori Y, Yoshimura M 2016 Opt. Express 24 30465Google Scholar

    [20]

    Huang J Y, Shen Y R, Chen C, Wu B 1991 Appl. Phys. Lett. 58 1579Google Scholar

    [21]

    Armstrong J A, Bloembergen N, Ducuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [22]

    姚建铨 1995 非线性光学频率变换及激光调谐技术 (北京: 科学出版社) 第69页

    Yao J Q 1995 Technic of Nonlinear Optical Frequency Conversion and Laser Tunable Technic (Beijing: Science Press) p69 (in Chinese)

  • 图 1  (a) 传统的355 nm产生装置图; (b) 基于基频放大的紫外皮秒355 nm输出效率提升系统装置图

    Fig. 1.  (a) Diagram of the traditional 355 nm generating device; (b) diagram of the UV picosecond 355 nm output efficiency improvement system based on fundamental frequency amplification

    图 2  M = 1∶2时晶体中1064, 532和355 nm功率密度变化曲线

    Fig. 2.  Power density curves of 1064, 532 and 355 nm laser in crystal with M = 1∶2.

    图 3  M = 1∶1时晶体中1064, 532, 和355 nm功率密度变化曲线

    Fig. 3.  Power density curves of 1064, 532 and 355 nm laser in crystal with M = 1∶1.

    图 4  传统方案紫外355 nm输出功率与晶体长度关系曲线

    Fig. 4.  Relationship between UV 355 nm output power and crystal length under traditional scheme

    图 5  不同功率密度配比M对晶体长度和转换效率的影响

    Fig. 5.  Effect of different power density ratios M on crystal length and conversion efficiency.

    图 6  基频放大方案紫外355 nm输出功率与晶体长度关系曲线

    Fig. 6.  Relationship between UV 355 nm output power and crystal length based on fundamental frequency amplification

    表 1  不同功率密度配比M条件下峰值转换效率对应的晶体长度

    Table 1.  Crystal lengths corresponding to the peak conversion as to different power density ratios M

    M1∶22∶23∶24∶25∶2
    晶体长度/mm12.27.05.44.64.1
    下载: 导出CSV
  • [1]

    Klein-Wiele J H, Bekesi J, Simon P 2004 Appl. Phys. A: Mater. Sci. Process. 79 775Google Scholar

    [2]

    Chen T C, Darling R B 2008 J. Mater. Process. Technol. 198 248Google Scholar

    [3]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [4]

    Gray R J, Yuan X H, Carroll D C, Brenner C M, Coury M, Quinn M N, Tresca O, Zielbauer B, Aurand B, Bagnoud V, Fils J, Kühl T, Lin X X, Li C, Li Y T, Roth M, Neely D, McKenna P 2011 Appl. Phys. Lett. 99 171502Google Scholar

    [5]

    Raith A, Perkins W T, Pearce N J G, Jeffries T E 1996 Fresenius' J. Anal. Chem. 355 789

    [6]

    Ubachs W, Eikema K S E, Hogervorst W, Cacciani P C 1997 J. Opt. Soc. Am. B 14 2469Google Scholar

    [7]

    Francis A L, Warner J W, Telfair W B, Yoder P R, Martin C A 1989 Arch. Ophthalmol. 107 131Google Scholar

    [8]

    Sharp D G 1939 J. Bacteriol. 37 447

    [9]

    Rastogi V K, Wallace L, Smith L S 2007 Mil. Med. 172 1166Google Scholar

    [10]

    Craxton R S 1980 Opt. Commun. 34 474Google Scholar

    [11]

    Hodgson N, Dudley D, Gruber L, Jordan W, Hoffman H 2001 Summaries of papers presented at the Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 11, 2001 p389

    [12]

    Wang C X, Wang G Y, Hicks A V, Dudley D R, Pang H Y, Hodgson N 2006 Solid State Lasers XV: Technology and Devices (Vol. 6100) (San Francisco: SPIE) p610019

    [13]

    Zhu P, Li D, Liu Q, Chen J, Fu S, Shi P, Du K, Loosen P 2013 Opt. Lett. 38 4716Google Scholar

    [14]

    Yap Y K, Inagaki M, Nakajima S, Mori Y, Sasaki T 1996 Opt. Lett. 21 1348Google Scholar

    [15]

    Zhang J, Wang L, Wu Y, Wang G, Fu P, Wu Y 2011 Opt. Express 19 16722Google Scholar

    [16]

    Zhang J, Wang L, Li Y, Wang G, Zhang G, Wu Y 2012 Opt. Express 20 16490Google Scholar

    [17]

    Li K, Zhang L, Xu D, Zhang G, Yu H, Wang Y, Shan F, Wang L 2014 Opt. Lett. 39 3305Google Scholar

    [18]

    尤晨华, 范琦康, 陆祖康, 尤桂铭 1989 光学学报 9 401Google Scholar

    You C H, Fan Q K, Lu Z Q, You G M 1989 Acta Opt. Sin. 9 401Google Scholar

    [19]

    Ueda K, Orii Y, Takahashi Y, Okada G, Mori Y, Yoshimura M 2016 Opt. Express 24 30465Google Scholar

    [20]

    Huang J Y, Shen Y R, Chen C, Wu B 1991 Appl. Phys. Lett. 58 1579Google Scholar

    [21]

    Armstrong J A, Bloembergen N, Ducuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [22]

    姚建铨 1995 非线性光学频率变换及激光调谐技术 (北京: 科学出版社) 第69页

    Yao J Q 1995 Technic of Nonlinear Optical Frequency Conversion and Laser Tunable Technic (Beijing: Science Press) p69 (in Chinese)

  • [1] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光. 物理学报, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [2] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [3] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [4] 谢仕永, 鲁远甫, 张小富, 乐小云, 杨程亮, 王保山, 许祖彦. CsB3O5晶体高效三倍频产生28.3W 355nm激光. 物理学报, 2016, 65(18): 184203. doi: 10.7498/aps.65.184203
    [5] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究. 物理学报, 2016, 65(7): 074202. doi: 10.7498/aps.65.074202
    [6] 闫晓娟, 马维光, 谭巍. 外腔共振和频系统中阻抗匹配的理论研究. 物理学报, 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [7] 谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦. 周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光. 物理学报, 2016, 65(9): 094203. doi: 10.7498/aps.65.094203
    [8] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [9] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量. 物理学报, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [10] 刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究. 物理学报, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [11] 李斌, 姚建铨, 丁欣, 王鹏, 张帆. 激光二极管抽运共轴双晶体黄光激光器. 物理学报, 2011, 60(2): 024208. doi: 10.7498/aps.60.024208
    [12] 刘欢, 巩马理. 紧凑型LD端面抽运Nd:YAG内腔三倍频准连续355 nm紫外激光器. 物理学报, 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [13] 张霞, 万松明, 殷绍唐, 尤静林, 张荣波. LiB3O5晶体高温拉曼光谱研究. 物理学报, 2009, 58(1): 373-377. doi: 10.7498/aps.58.373
    [14] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量. 物理学报, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
    [15] 耿爱丛, 薄 勇, 毕 勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭 林, 王桂玲, 崔大复, 许祖彦. V型腔腔内和频产生3 W连续波589 nm黄光激光器. 物理学报, 2006, 55(10): 5227-5231. doi: 10.7498/aps.55.5227
    [16] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [17] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, 2005, 54(8): 3675-3679. doi: 10.7498/aps.54.3675
    [18] 甘琛利, 张彦鹏, 冯 宇, 余孝军, 汪 杰, 李创社, 宋建平, 卢克清, 侯 洵. 阿秒极化拍的V型三能级对称二阶相干理论. 物理学报, 2005, 54(2): 726-735. doi: 10.7498/aps.54.726
    [19] 蒋毅坚, 王越, 曾令祉, 刘玉龙. LiB3O5单晶的偏振喇曼散射谱. 物理学报, 1996, 45(5): 885-892. doi: 10.7498/aps.45.885
    [20] 鲁士平, 袁怿谦, 杨立书. β-BaB2O4晶体中367.3—379.4nm的和频产生. 物理学报, 1990, 39(10): 1570-1572. doi: 10.7498/aps.39.1570
计量
  • 文章访问数:  8695
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-08-02
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回