搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2+在强激光脉冲作用下的电离率和原子核间距的关系

俞祖卿 杨魏吉 何峰

引用本文:
Citation:

H2+在强激光脉冲作用下的电离率和原子核间距的关系

俞祖卿, 杨魏吉, 何峰

Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective

Yu Zu-Qing, Yang Wei-Ji, He Feng
PDF
导出引用
  • 本文利用蒙特卡罗方法模拟电子在激光场以及分子库仑势作用下的经典轨迹,研究了氢分子离子H2+的电离率和原子核间距的关系,为电荷共振电离增强现象提供了一种基于电子经典运动的解释.当原子核间距为5–6 a.u.时,H2+的电离率显著增大.电子的运动轨迹揭示此时电子先围绕其中一个原子核运动,在逐步获得越来越多的动能后,运动轨迹受到另一个原子核的强烈影响,最后电子逃逸原子核的束缚.原子核之间的库仑势垒和激光调制的库仑势垒的高度差与电离率的大小直接相关.
    Ionizations of atoms and molecules in strong laser fields are fundamental processes of ultrafast physics. Compared with atom ionization, molecular ionization is very complex due to the existence of multi Coulomb centers. As a simplest molecule, H2+ has been widely used to explore new phenomena of molecules in strong laser fields. One of the notable processes in H2+ ionization is charge resonance enhanced ionization (CREI), in which the ionization rate is enhanced substantially when the internuclear distances are around 6 a.u. and 10 a.u. CREI has been extensively studied by numerically simulating the time-dependent Schrödinger equation. While quantum calculations provide accurate ionization rates, the mechanism governing the CREI is not revealed in such ab-initio calculations. On the contrary, the calculations based on the classical trajectories Monte-Carlo assembly may offer an intuitive picture for CREI though some quantum information is not included. In this paper, we revisit the CREI of H2+ in a strong infrared laser field by Monte-Carlo simulation. By initializing ten-thousand classical points whose initial positions and velocities satisfy the field-free Hamiltonian of H2+, we solve the classical Newtonian equation and obtain the trajectories of all particles, from which one may analyze the particle velocities, energies, etc. We count the ionization events by diagnosing the particle energy after the laser interaction. If the sum of the kinetic energy and potential energy is larger than 0, we set it as an ionization event. The ionization rate is calculated by collecting all ionization events and normalizing it with the total particle number involved in the calculation. By setting the internuclear distances to be different values, we obtain the ionization rate as a function of internuclear distance. Our simulation shows that the ionization probability is greatly enhanced when the internuclear distance is about 5 to 6 a.u. by employing a 1064 nm, 4×1013 W/cm2, five cycles laser pulse. By tracing the particle trajectory, we find that the electron usually gains the energy from the laser field by circulating one nucleus, then passes through the interatomic barrier and moves around the other nucleus before being ionized. By looking into the relationship between the ionization probability and the laser-distorted Coulomb potential at different internuclear distances, we find that the ionization probability is maximum when the energy difference between the ground state and the interatomic Coulomb barrier, or between the ground state and the saddle value of the laser-distorted potential, is minimum. The classical calculation of the ionization of H2+ interacting with intense laser field reproduces the qualitative features of the corresponding quantum-mechanical calculation. It offers an intuitive physical picture of the tunneling ionization of molecules through investigating the classical trajectories and provides a new perspective to inspect the intriguing phenomena in quantum systems.
      通信作者: 何峰, fhe@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11322438,11574205)资助的课题.
      Corresponding author: He Feng, fhe@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11322438, 11574205).
    [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    L'Huillier, Schafer K J, Kulander K C 1991 J. Phys. B 24 3315

    [3]

    Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese)[周效信, 李白文2001物理学报50 1902]

    [4]

    Sukharev M E, Krainov V P 1998 J. Opt. Soc. Am. B:Opt. Phys. 15 2201

    [5]

    Winter M, Schmidt R, Thumm U 2009 Phys. Rev. A 80 031401

    [6]

    Guo C, Li M, Nibarger J P, Gibson G N 1998 Phys. Rev. A 58 R4271

    [7]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [8]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [9]

    He F, Becker A, Thumm U 2008 Phys. Rev. Lett. 101 213002

    [10]

    He F, Thumm U 2010 Phys. Rev. A 81 053413

    [11]

    He F 2012 Phys. Rev. A 86 063415

    [12]

    Rankin R, Capjack C E, Burnett N H, Corkum P B 1991 Opt. Lett. 16 835

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Paulus G G, Nicklich W, Zacher F, Lambropoulos P, Walther H 1996 J. Phys. B 29 L249

    [15]

    Yu X G, Wang B B, Chen T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese)[余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭2005物理学报54 3542]

    [16]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511

    [17]

    Staudte A, Pavičič D, Chelkowski S, Zeidler D, Meckndel M, Niikura H, Schöffler M, Schössler S, Ulrich B, Rajeev P P, Weber Th, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, Dörner R 2007 Phys. Rev. Lett. 98 073003

    [18]

    Ben-Itzhak I, Wang P Q, Sayler A M, Carnes K D, Leonard M, Esry B D, Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ghimire S, Chang Z, Cocke C L 2008 Phys. Rev. A 78 063419

    [19]

    Xu H, He F, Kielpinski D, Sang R T, Litvinyuk I V 2015 Sci. Rep. 5 13527

    [20]

    Xin L, Qin H C, Wu W Y, He F 2015 Phys. Rev. A 92 063803

    [21]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [22]

    Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J, Légaré F 2011 Phys. Rev. Lett. 107 063201

    [23]

    Lötstedt E, Kato T, Yamanouchi K 2012 Phys. Rev. A 85 041402

    [24]

    Xi C, Chu S 2000 Phys. Rev. A 63 013414

    [25]

    Plummer M, McCann J F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4625

    [26]

    Tsogbayar T, Horbatsch M 2013 J. Phys. B 46 085004

    [27]

    Rzaewski K, Mewenstein, Salières P 1994 Phys. Rev. A 49 1196

    [28]

    Grobe R, Law C K 1991 Phys. Rev. A 44 R4114

    [29]

    Qu W X, Hu S X, Xu Z Z 1998 Acta Phys. Sin. 47 571 (in Chinese)[屈卫星, 胡素兴, 徐至展1998物理学报47 571]

    [30]

    Balcou Ph, L'Huillier A, Escande D 1996 Phys. Rev. A 53 3456

    [31]

    Bandarage G, Maquet A, Cooper J 1990 Phys. Rev. A 41 1744

    [32]

    Cocke S, Reichl L E 1996 Phys. Rev. A 53 1746

    [33]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002

    [35]

    Duan Y W, Liu W K, Yuan J M 2000 Phys. Rev. A 61 053403

  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    L'Huillier, Schafer K J, Kulander K C 1991 J. Phys. B 24 3315

    [3]

    Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese)[周效信, 李白文2001物理学报50 1902]

    [4]

    Sukharev M E, Krainov V P 1998 J. Opt. Soc. Am. B:Opt. Phys. 15 2201

    [5]

    Winter M, Schmidt R, Thumm U 2009 Phys. Rev. A 80 031401

    [6]

    Guo C, Li M, Nibarger J P, Gibson G N 1998 Phys. Rev. A 58 R4271

    [7]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [8]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [9]

    He F, Becker A, Thumm U 2008 Phys. Rev. Lett. 101 213002

    [10]

    He F, Thumm U 2010 Phys. Rev. A 81 053413

    [11]

    He F 2012 Phys. Rev. A 86 063415

    [12]

    Rankin R, Capjack C E, Burnett N H, Corkum P B 1991 Opt. Lett. 16 835

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Paulus G G, Nicklich W, Zacher F, Lambropoulos P, Walther H 1996 J. Phys. B 29 L249

    [15]

    Yu X G, Wang B B, Chen T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese)[余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭2005物理学报54 3542]

    [16]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511

    [17]

    Staudte A, Pavičič D, Chelkowski S, Zeidler D, Meckndel M, Niikura H, Schöffler M, Schössler S, Ulrich B, Rajeev P P, Weber Th, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, Dörner R 2007 Phys. Rev. Lett. 98 073003

    [18]

    Ben-Itzhak I, Wang P Q, Sayler A M, Carnes K D, Leonard M, Esry B D, Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ghimire S, Chang Z, Cocke C L 2008 Phys. Rev. A 78 063419

    [19]

    Xu H, He F, Kielpinski D, Sang R T, Litvinyuk I V 2015 Sci. Rep. 5 13527

    [20]

    Xin L, Qin H C, Wu W Y, He F 2015 Phys. Rev. A 92 063803

    [21]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [22]

    Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J, Légaré F 2011 Phys. Rev. Lett. 107 063201

    [23]

    Lötstedt E, Kato T, Yamanouchi K 2012 Phys. Rev. A 85 041402

    [24]

    Xi C, Chu S 2000 Phys. Rev. A 63 013414

    [25]

    Plummer M, McCann J F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4625

    [26]

    Tsogbayar T, Horbatsch M 2013 J. Phys. B 46 085004

    [27]

    Rzaewski K, Mewenstein, Salières P 1994 Phys. Rev. A 49 1196

    [28]

    Grobe R, Law C K 1991 Phys. Rev. A 44 R4114

    [29]

    Qu W X, Hu S X, Xu Z Z 1998 Acta Phys. Sin. 47 571 (in Chinese)[屈卫星, 胡素兴, 徐至展1998物理学报47 571]

    [30]

    Balcou Ph, L'Huillier A, Escande D 1996 Phys. Rev. A 53 3456

    [31]

    Bandarage G, Maquet A, Cooper J 1990 Phys. Rev. A 41 1744

    [32]

    Cocke S, Reichl L E 1996 Phys. Rev. A 53 1746

    [33]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002

    [35]

    Duan Y W, Liu W K, Yuan J M 2000 Phys. Rev. A 61 053403

  • [1] 黄文逍, 张逸竹, 阎天民, 江玉海. 超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论. 物理学报, 2016, 65(22): 223204. doi: 10.7498/aps.65.223204
    [2] 林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫. 用推广的量子轨迹蒙特卡罗方法研究强场光电子全息. 物理学报, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [3] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [4] 惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏. 超小型条纹管的动态特性研究. 物理学报, 2016, 65(1): 018502. doi: 10.7498/aps.65.018502
    [5] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控. 物理学报, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [6] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [7] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移. 物理学报, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [8] 李洪玉, 刘建胜. 超短强激光脉冲激励甲烷团簇的内电离机理. 物理学报, 2010, 59(11): 7850-7856. doi: 10.7498/aps.59.7850
    [9] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [10] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [11] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 董 璨, 邵士勇. 纳秒强激光中丙酮团簇增强的多价电离现象. 物理学报, 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
    [12] 石春花, 邱锡钧, 安伟科, 李儒新. μ-子催化核聚变中强脉冲激光对介原子μ3He的电离. 物理学报, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [13] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [14] 王桂秋, 王友年. 激光场对快速分子离子与固体相互作用的影响. 物理学报, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [15] 王训春, 邱锡钧, 郑丽萍. 相对相位对双色激光场中线性多原子分子离子增强电离行为的影响. 物理学报, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [16] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [17] 杨晓华, 陈扬骎, 蔡佩佩, 卢晶晶, 王荣军. 差分速度调制分子离子激光光谱技术. 物理学报, 1999, 48(5): 834-839. doi: 10.7498/aps.48.834
    [18] 王友年, 马腾才. 低速分子离子在固体电子气中的散射与能量损失. 物理学报, 1994, 43(6): 979-984. doi: 10.7498/aps.43.979
    [19] 孙飚, 李家明. 分子里德伯态的电子能级结构——一些小分子及分子离子的里德伯能级结构. 物理学报, 1993, 42(1): 25-31. doi: 10.7498/aps.42.25
    [20] 陈荣清, 徐至展, 孙岚, 姚关华, 张文琦, 李萍. 激光方脉冲作用下强场自电离过程. 物理学报, 1991, 40(10): 1584-1589. doi: 10.7498/aps.40.1584
计量
  • 文章访问数:  2780
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-06-27
  • 刊出日期:  2016-10-05

H2+在强激光脉冲作用下的电离率和原子核间距的关系

  • 1. 上海交通大学物理与天文系, 激光等离子体教育部重点实验室, IFSA协同创新中心, 上海 200240
  • 通信作者: 何峰, fhe@sjtu.edu.cn
    基金项目: 国家自然科学基金(批准号:11322438,11574205)资助的课题.

摘要: 本文利用蒙特卡罗方法模拟电子在激光场以及分子库仑势作用下的经典轨迹,研究了氢分子离子H2+的电离率和原子核间距的关系,为电荷共振电离增强现象提供了一种基于电子经典运动的解释.当原子核间距为5–6 a.u.时,H2+的电离率显著增大.电子的运动轨迹揭示此时电子先围绕其中一个原子核运动,在逐步获得越来越多的动能后,运动轨迹受到另一个原子核的强烈影响,最后电子逃逸原子核的束缚.原子核之间的库仑势垒和激光调制的库仑势垒的高度差与电离率的大小直接相关.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回