搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外光注入半导体环形激光器同时产生两路宽带混沌信号

阎娟 潘炜 李念强 张力月 刘庆喜

引用本文:
Citation:

外光注入半导体环形激光器同时产生两路宽带混沌信号

阎娟, 潘炜, 李念强, 张力月, 刘庆喜

Two broadband chaotic signals generated simultaneously by semiconductor ring laser with parallel chaotic injection

Yan Juan, Pan Wei, Li Nian-Qiang, Zhang Li-Yue, Liu Qing-Xi
PDF
导出引用
  • 本文将交叉反馈半导体环形激光器(SRL)产生的两路混沌信号平行单向注入到从激光器对应的模式中,构成了宽带混沌激光生成方案.通过建立速率方程,数值分析了失谐频率和注入强度对系统带宽及安全性影响.利用强度时间序列的频域变化规律揭示了带宽增强的物理原因,并且对增强区域不对称进行了解释.仿真结果表明:两路混沌信号的带宽增强路径相似.在非注入锁定区域,选择较高失谐频率以及适当的注入强度可以实现两路信号的带宽以及不可预测度同时增强.通过分析混沌信号的光谱可知注入混沌光与从激光器激光之间的拍频作用产生的高频振荡是导致带宽增强的物理原因.主激光器发生红移现象导致带宽增强区域呈现不对称,并且负失谐频率下容易实现带宽增强.非对称注入强度使得注入锁定区域缩小,拓宽了高注入强度下带宽增强范围.
    Recently semiconductor ring laser (SRL) as a novel device has received much attention, for its special cavity allows the output light to propagate in two opposite directions, namely the clockwise mode and counterclockwise mode. SRL does not require gratings or cleaved facets for optical feedback and can be a candidate for small sized photonic integrated circuits which have been developed for secure data transmission, with chaotic carriers and high rate random bit generated. In this paper, we propose a method to obtain two broadband chaotic signals with high unpredictability degree by utilizing injected slave SRL and further explore the physical mechanism and injection conditions. Based on a conventional master-slave configuration, the proposed method obtains two modes of chaotic signals by master SRL with external cross feedback, which are injected in parallel to a slave SRL correspondingly. According to the well-known Lang-Kobayashi rate equations, we establish rate equations and numerically investigate the influences of frequency detuning and injection strength on bandwidth and unpredictability degree. We adapt the given definition of bandwidth and the normalized permutation entropy to respectively evaluate bandwidth and unpredictability degree of chaotic signals. Furthermore, we reveal the underlying physical mechanism of bandwidth enhancement and asymmetric bandwidth-enhancing region by analyzing the radiofrequency and optical spectra of intensity time series. The results show that two chaotic signals have similar routes to enhancing the bandwidth in frequency domain. In the unlocking injection area, two broadband and unpredictability-enhancing chaotic signals generated by slave SRL are simultaneously achieved by choosing appropriate control parameters. Analyses of optical spectra reveal that high-frequency periodic oscillation generated between injection chaotic signals and slave light via beating is the physical mechanism of bandwidth enhncment. The bandwidthenhancing domains of two chaotic signals are asymmetrical due to redshift of master SRL frequency, with external chaotic signals injected. Bandwidth-enhanced chaotic signals are easier to obtain in the domain of negative frequency detuning. The asymmetrical injections contribute to reducing the locking region and extending the bandwidthenhancing region under high injection strength. This conventional master-slave configuration composed of two SRLs can be easily implemented on chip and save other optical devices. The slave SRL subjected to parallel injection signals from master SRL can be used as a wideband unpredictability-enhancing chaotic source, which is extremely useful for the high capacity security-enhancing multiple chaotic communications, as well as for the potential applications of high speed random number generators.
      通信作者: 阎娟, juan126jay@sina.com
    • 基金项目: 国家自然科学基金(批准号:61274042)资助的课题.
      Corresponding author: Yan Juan, juan126jay@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274042).
    [1]

    Ermakov I V, Kingni S T, Tronciu V Z, Danckaert J 2013 Opt. Commun. 286 265

    [2]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874

    [3]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [4]

    Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439

    [5]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [6]

    Wang A B, Wang B J, Li L, Wang Y C, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800710

    [7]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [8]

    Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196

    [9]

    Wang A B, Wang Y C, He H 2008 IEEE Photonics. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Hong Y H, Spencer P S, Shore K A 2012 Opt. Soc. Am. 29 415

    [12]

    Chen J J, Wu Z M, Tang X, Deng T, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 7173

    [13]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [14]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [15]

    Memon M I, Li B, Mezosi G, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photonics Technol. Lett. 21 1792

    [16]

    Yuan G H, Zhang X, Wang Z R 2013 Optik 124 5715

    [17]

    Xiang S Y, Wen A J, Shang L, Zhang H X, Lin L 2013 International Conference on Optical Communications & Networks Bhopal, India July 26-28, 2013 p1

    [18]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Optics & Laser Technology 53 45

    [19]

    Nguimdo R M, Verschaffelt G, Danckaert J, van der Sande G 2012 Opt. Lett. 37 2541

    [20]

    Wang Z R, Yuan G H, Verschaffelt G, Danckaert J, Yu S Y 2008 IEEE Photonics Technol. Lett. 20 1228

    [21]

    Trita A, Mezosi G, Sorel M, Giuliani G 2014 IEEE Photonics Technol. Lett. 26 96

    [22]

    Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)[王顺天, 吴正茂, 吴加贵, 周立, 夏光琼2015物理学报64 154205]

    [23]

    Chrostowski L, Shi W 2008 IEEE J. Lightwave Technol. 26 3355

    [24]

    Sorel M, Giuliani G, Scire A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187

    [25]

    Xiang S Y 2012 Ph. D. Dissertation (Chengdu:Southwest jiaotong university) (in Chinese)[项水英2012博士学位论文(成都:西南交通大学)]

    [26]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 242091 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟2015物理学报64 242091]

    [27]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [28]

    Zunino L, Rosso O A, Soriano M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1250

  • [1]

    Ermakov I V, Kingni S T, Tronciu V Z, Danckaert J 2013 Opt. Commun. 286 265

    [2]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874

    [3]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [4]

    Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439

    [5]

    Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T, Davis P 2010 Opt. Express 18 5512

    [6]

    Wang A B, Wang B J, Li L, Wang Y C, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800710

    [7]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [8]

    Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196

    [9]

    Wang A B, Wang Y C, He H 2008 IEEE Photonics. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Hong Y H, Spencer P S, Shore K A 2012 Opt. Soc. Am. 29 415

    [12]

    Chen J J, Wu Z M, Tang X, Deng T, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 7173

    [13]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [14]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [15]

    Memon M I, Li B, Mezosi G, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photonics Technol. Lett. 21 1792

    [16]

    Yuan G H, Zhang X, Wang Z R 2013 Optik 124 5715

    [17]

    Xiang S Y, Wen A J, Shang L, Zhang H X, Lin L 2013 International Conference on Optical Communications & Networks Bhopal, India July 26-28, 2013 p1

    [18]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Optics & Laser Technology 53 45

    [19]

    Nguimdo R M, Verschaffelt G, Danckaert J, van der Sande G 2012 Opt. Lett. 37 2541

    [20]

    Wang Z R, Yuan G H, Verschaffelt G, Danckaert J, Yu S Y 2008 IEEE Photonics Technol. Lett. 20 1228

    [21]

    Trita A, Mezosi G, Sorel M, Giuliani G 2014 IEEE Photonics Technol. Lett. 26 96

    [22]

    Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)[王顺天, 吴正茂, 吴加贵, 周立, 夏光琼2015物理学报64 154205]

    [23]

    Chrostowski L, Shi W 2008 IEEE J. Lightwave Technol. 26 3355

    [24]

    Sorel M, Giuliani G, Scire A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187

    [25]

    Xiang S Y 2012 Ph. D. Dissertation (Chengdu:Southwest jiaotong university) (in Chinese)[项水英2012博士学位论文(成都:西南交通大学)]

    [26]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 242091 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟2015物理学报64 242091]

    [27]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [28]

    Zunino L, Rosso O A, Soriano M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1250

  • [1] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [2] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [3] 颜森林. 半导体激光器混沌法拉第效应控制方法. 物理学报, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [4] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [5] 王顺天, 吴正茂, 吴加贵, 周立, 夏光琼. 基于半导体环形激光器的高速双向双信道混沌保密通信. 物理学报, 2015, 64(15): 154205. doi: 10.7498/aps.64.154205
    [6] 颜森林. 外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究. 物理学报, 2012, 61(16): 160505. doi: 10.7498/aps.61.160505
    [7] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [8] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [9] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [10] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [11] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [12] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [13] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [14] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [15] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [16] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [17] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [18] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [19] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [20] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制. 物理学报, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
计量
  • 文章访问数:  2690
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-06
  • 修回日期:  2016-08-02
  • 刊出日期:  2016-10-05

外光注入半导体环形激光器同时产生两路宽带混沌信号

  • 1. 西南交通大学信息科学与技术学院, 信息光子与通信研究中心, 成都 611756
  • 通信作者: 阎娟, juan126jay@sina.com
    基金项目: 国家自然科学基金(批准号:61274042)资助的课题.

摘要: 本文将交叉反馈半导体环形激光器(SRL)产生的两路混沌信号平行单向注入到从激光器对应的模式中,构成了宽带混沌激光生成方案.通过建立速率方程,数值分析了失谐频率和注入强度对系统带宽及安全性影响.利用强度时间序列的频域变化规律揭示了带宽增强的物理原因,并且对增强区域不对称进行了解释.仿真结果表明:两路混沌信号的带宽增强路径相似.在非注入锁定区域,选择较高失谐频率以及适当的注入强度可以实现两路信号的带宽以及不可预测度同时增强.通过分析混沌信号的光谱可知注入混沌光与从激光器激光之间的拍频作用产生的高频振荡是导致带宽增强的物理原因.主激光器发生红移现象导致带宽增强区域呈现不对称,并且负失谐频率下容易实现带宽增强.非对称注入强度使得注入锁定区域缩小,拓宽了高注入强度下带宽增强范围.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回