搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半导体环形激光器的高速双向双信道混沌保密通信

王顺天 吴正茂 吴加贵 周立 夏光琼

引用本文:
Citation:

基于半导体环形激光器的高速双向双信道混沌保密通信

王顺天, 吴正茂, 吴加贵, 周立, 夏光琼

High speed bidirectional dual-channel chaos secure communication based on semiconductor ring lasers

Wang Shun-Tian, Wu Zheng-Mao, Wu Jia-Gui, Zhou Li, Xia Guang-Qiong
PDF
导出引用
  • 提出了一种利用半导体环形激光器(SRLs)的新型高速双向、双信道混沌保密通信系统. 在该系统中, 首先利用交叉双光反馈对驱动激光器的顺时针模式和逆时针模式的混沌延时特征进行抑制. 然后将此混沌信号注入到一对响应激光器对应的顺时针模和逆时针模中, 以实现带宽的增强及混沌同步. 最后基于响应激光器之间的混沌同步, 实现高速率、双向、双信道的混沌保密通信. 通过对驱动激光器在交叉双光反馈作用下的混沌特性、以及响应激光器在不同条件下的同步特性进行了相关理论和仿真研究, 结果表明: 驱动激光器在合适的交叉双光反馈作用下可以产生延时特性被良好隐藏的顺时针模式和逆时针模式混沌信号; 在该混沌信号的注入下, 响应激光器输出的混沌信号带宽可以得到明显增强; 通过设置合适注入强度值和频率失谐值, 响应激光器之间可实现高质量的等时混沌同步. 最后, 对系统的双向、双信道混沌保密通信特性进行了讨论. 当10 Gbit/s信号传输距离为10 km时, 解调信息Q因子值仍可保持在6以上.
    Chaos is a fascinating phenomenon of nonlinear dynamical systems, and optical chaos communication has been one of potential frontier techniques to implement secure transmission of information. In this paper a novel high-speed bidirectional dual-channel chaos secure communication system is proposed based on semiconductor ring lasers (SRLs). In this system, the time delay signatures in chaotic output of clockwise (CW) and counterclockwise (CCW) patterns from a driving SRL (D-SRL) are firstly suppressed by using the double optical cross-feedback frame. Then, the chaotic output of D-SRL is injected into two response SRLs (R-SRLs) to drive the corresponding CW and CCW patterns of R-SRLs that are synchronized and bandwidth enhanced simultaneously. Thus, a bidirectional dual-channel chaos communication could be built based on chaotic synchronization of the two R-SRLs. We theoretically investigated the chaotic characteristics of a D-SRL under double optical cross-feedback and the chaotic synchronization features between R-SRL1 and R-SRL2 under different driving conditions. Results show that the time delay signatures of CW and CCW patterns of D-SRL could be effectively hidden under proper feedback conditions. The bandwidths of CW and CCW patterns of the D-SRL could be enhanced significantly. Furthermore, high-quality isochronous synchronization between R-SRL1 and R-SRL2 can be realized by choosing appropriate injection strength and detuning frequency in D-SRL and R-SRLs. Finally, the communication performances of bidirectional dual-channel chaos secure communication based on this proposed system are preliminarily examined and discussed, and the simulated results demonstrate that for 10 Gbit/s message, the Q factor of decoded message could be maintained above 6 after 10 kilometers distance transmission.
    • 基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 61475127, 11474233)、重庆市高等学校青年骨干教师资助计划(批准号: 102060-20600512)和西南大学中央高校基本科研业务费专项基金(批准号: XDJK2013B037, XDJK2014C079, SWU114004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China, china (Grant Nos. 61178011, 61275116, 61475127, 11474233), the Foundation of Chongqing College Key Yung Teachers, China (Grant No. 102060-20600512), and the Fundamental Research Funds for the Central Universities of Southwest university, China (Grant Nos. XDJK2013B037, XDJK2014C079, SWU114004).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Wu L, Zhu S Q, Ni Y 2007 Eur. Phys. J. D 41 349

    [3]

    Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 物理学报 62 104208]

    [4]

    Li K, Wang A B, Zhao T, Wang Y C 2013 Acta Phys. Sin. 62 144207 (in Chinese) [李凯, 王安帮, 赵彤, 王云才 2013 物理学报 62 144207]

    [5]

    Yan S L 2014 Chin. Phys. B 23 090503

    [6]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762

    [8]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [9]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [10]

    Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854

    [11]

    Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974

    [12]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094

    [13]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [14]

    Sorel M, Giuliani G, Scirè A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187

    [15]

    Yuan G H, Yu S Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1227

    [16]

    Yuan G H, Yu S Y 2008 IEEE J. Quantum Electron. 44 41

    [17]

    Först S, Sorel M 2008 IEEE Photon. Technol. Lett. 20 366

    [18]

    Mashal L, Van der Sande G, Gelens L, Danckaert J, Verschaffelt G 2012 Opt. Express 20 22503

    [19]

    Chlouverakis K E, Mikroulis S, Stamataki I, Syvridis D 2007 Opt. Lett. 32 2912

    [20]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [21]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874

    [22]

    Kang Z X, Sun J, Ma L, Qi Y H, Jian S S 2014 IEEE J. Quantum Electron. 50 148

    [23]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603

    [24]

    Vawter G A, Mar A, Hietala V, Zolper J, Hohimer J 1997 IEEE Photon. Technol. Lett. 9 1634

    [25]

    Memon M I, Mezosi G, Li B, Lu D, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photon. Technol. Lett. 21 733

    [26]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. & Laser Technol. 53 45

    [27]

    Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439

    [28]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (California: Aca-demic Press) p49

    [29]

    Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G 2012 Opt. Lett. 37 2541

    [30]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [31]

    Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442

    [32]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [33]

    Agrawal G P 2002 Fiber-Optic Communications Systems (3rd Ed.) (New York: John Wiley & Sons, Inc.) p166

  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Wu L, Zhu S Q, Ni Y 2007 Eur. Phys. J. D 41 349

    [3]

    Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 物理学报 62 104208]

    [4]

    Li K, Wang A B, Zhao T, Wang Y C 2013 Acta Phys. Sin. 62 144207 (in Chinese) [李凯, 王安帮, 赵彤, 王云才 2013 物理学报 62 144207]

    [5]

    Yan S L 2014 Chin. Phys. B 23 090503

    [6]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762

    [8]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [9]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [10]

    Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854

    [11]

    Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974

    [12]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094

    [13]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [14]

    Sorel M, Giuliani G, Scirè A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187

    [15]

    Yuan G H, Yu S Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1227

    [16]

    Yuan G H, Yu S Y 2008 IEEE J. Quantum Electron. 44 41

    [17]

    Först S, Sorel M 2008 IEEE Photon. Technol. Lett. 20 366

    [18]

    Mashal L, Van der Sande G, Gelens L, Danckaert J, Verschaffelt G 2012 Opt. Express 20 22503

    [19]

    Chlouverakis K E, Mikroulis S, Stamataki I, Syvridis D 2007 Opt. Lett. 32 2912

    [20]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [21]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874

    [22]

    Kang Z X, Sun J, Ma L, Qi Y H, Jian S S 2014 IEEE J. Quantum Electron. 50 148

    [23]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603

    [24]

    Vawter G A, Mar A, Hietala V, Zolper J, Hohimer J 1997 IEEE Photon. Technol. Lett. 9 1634

    [25]

    Memon M I, Mezosi G, Li B, Lu D, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photon. Technol. Lett. 21 733

    [26]

    Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. & Laser Technol. 53 45

    [27]

    Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439

    [28]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (California: Aca-demic Press) p49

    [29]

    Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G 2012 Opt. Lett. 37 2541

    [30]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [31]

    Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442

    [32]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [33]

    Agrawal G P 2002 Fiber-Optic Communications Systems (3rd Ed.) (New York: John Wiley & Sons, Inc.) p166

  • [1] 颜森林. 激光混沌并行串联同步及其在中继器保密通信系统中的应用. 物理学报, 2019, 68(17): 170502. doi: 10.7498/aps.68.20190212
    [2] 阎娟, 潘炜, 李念强, 张力月, 刘庆喜. 外光注入半导体环形激光器同时产生两路宽带混沌信号. 物理学报, 2016, 65(20): 204203. doi: 10.7498/aps.65.204203
    [3] 钟东洲, 邓涛, 郑国梁. 双信道偏振复用保密通信系统的完全混沌同步的操控性研究. 物理学报, 2014, 63(7): 070504. doi: 10.7498/aps.63.070504
    [4] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂胜. 一种基于混沌系统部分序列参数辨识的混沌保密通信方法. 物理学报, 2014, 63(1): 010501. doi: 10.7498/aps.63.010501
    [5] 赵艳梅, 夏光琼, 吴加贵, 吴正茂. 基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究. 物理学报, 2013, 62(21): 214206. doi: 10.7498/aps.62.214206
    [6] 田子建, 陈文超, 樊京. 基于双Σ形金属条的双向左手材料. 物理学报, 2013, 62(7): 074102. doi: 10.7498/aps.62.074102
    [7] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [8] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [9] 刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼. 一种新型的双向长距离光纤混沌保密通信系统性能研究. 物理学报, 2012, 61(2): 024203. doi: 10.7498/aps.61.024203
    [10] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [11] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [12] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [13] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [14] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] 王明军, 王兴元. 基于一阶时滞混沌系统参数辨识的保密通信方案. 物理学报, 2009, 58(3): 1467-1472. doi: 10.7498/aps.58.1467
    [16] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [17] 颜森林. 光纤混沌双芯双向保密通信系统研究. 物理学报, 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [18] 胡进峰, 郭静波. 一种破译混沌直接序列扩频保密通信的方法. 物理学报, 2008, 57(3): 1477-1484. doi: 10.7498/aps.57.1477
    [19] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [20] 吴加贵, 吴正茂, 林晓东, 张 毅, 钟东洲, 夏光琼. 双信道光混沌通信系统的理论模型及性能研究. 物理学报, 2005, 54(9): 4169-4175. doi: 10.7498/aps.54.4169
计量
  • 文章访问数:  4620
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-03-10
  • 刊出日期:  2015-08-05

/

返回文章
返回