搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碰撞参数对磁化电负性等离子体鞘层结构的影响

刘惠平 邹秀 邹滨雁 邱明辉

引用本文:
Citation:

碰撞参数对磁化电负性等离子体鞘层结构的影响

刘惠平, 邹秀, 邹滨雁, 邱明辉

Effect of collision parameter on magnetized electronegative plasma sheath structure

Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui
PDF
导出引用
  • 数值研究了离子马赫数的取值和碰撞参数对由热电子、热负离子和冷正离子构成的磁化电负性等离子体鞘层结构的影响.通过理论推导得到了鞘层模型的玻姆判据的表达式,并得到了不同离子马赫数情况下鞘层的正离子密度分布和净电荷分布曲线,还进一步得到了几个不同碰撞参数下鞘层的带电粒子密度、净电荷以及电势分布曲线.结果表明:离子马赫数取值不同对应不同的鞘层结构;碰撞使鞘层中正离子密度增加,使电子密度更快减小到零,对负离子密度分布影响不明显;碰撞使净电荷密度的峰值幅度增加并向鞘层边缘移动,使鞘层中电势值升高并使鞘层厚度减小.
    The structure of an electronegative plasma sheath in an oblique magnetic field is investigated. Moreover, the collisions between positive ions and neutral particles are taken into account. It is assumed that the system consists of hot electrons, hot negative ions, and cold positive ions. Also the negative ions and the electrons are assumed to be described by the Boltzmann distributions of their own temperatures, and the accelerated positive ions are treated by the continuity and momentum balance equations through the sheath region. In addition, it is assumed that the collision cross section has a power law dependence on the positive velocity. After theoretical derivation, an exact expression of sheath criterion is obtained. The numerical simulation results include the density distributions of the positive ions for different invariable ion Mach numbers satisfying Bohm criterion, and the comparison of net space charge distribution between variable and invariable ion Mach numbers. Furthermore, three kinds of charged particle densities, the net space charges, and the spatial electric potentials in the sheath are studied numerically for different collision parameters under the condition of the fixed ion Mach number. The results show that the ion Mach number has not only the lower limit but also the upper limit. The ion Mach number affects the sheath structure by influencing the distribution of the positive ion density, and different conclusions can be obtained because ion Mach number is adopted as variable or invariable value when discussing the effects of the other variables which can result in a variety of the ion Mach numbers on the sheath formation. The reason is that the actual sheath structure modification brought on by the variation of a parameter can be divided into two parts. One is the sheath formation change caused directly by the variation of the parameter, and the other is the sheath formation change caused by the Bohm criterion modification which the variation of the parameter results in. Therefore, an identical ion Mach number should be adopted when studying the direct effects of a parameter variety on plasma sheath structure. In addition, it is concluded that the collisions between positive ions and neutral particles make positive ion density curve higher and electron density curve lower than the case without collisions. Negative ion density does not change significantly no matter whether there exists collision. Besides, there is a peak in the profile of the net space charge while in the presence of ion-neutral collision, and the net space charge peak moves toward the sheath edge. The spatial potential increases and the sheath thickness decreases on account of the presence of the collisions between ions and neutral particles.
      通信作者: 刘惠平, lhp@djtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:10605008,51372026)资助的课题.
      Corresponding author: Liu Hui-Ping, lhp@djtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10605008, 51372026).
    [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229

    [2]

    Femandez-Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937

    [3]

    Femandez-Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Phys. 60 81

    [5]

    Li M, Michael A V, Steven K D, Michael J B 2000 IEEE Trans. Plasma Sci. 28 248

    [6]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [7]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501

    [8]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Com. Phy. 27 883 (in Chinese)[宫野, 段萍, 张建红, 邹秀, 刘金远, 刘悦2010计算物理 27 883]

    [9]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032

    [10]

    Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹秀, 籍延坤, 邹滨雁2010物理学报 59 1902]

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma Phys. 76 247

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201

    [14]

    Ghomi H, Khoramabadi M 2011 J. Fusion Energ. 30 481

    [15]

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204 (in Chinese)[邱明辉, 刘惠平, 邹秀2012物理学报 61 155204]

    [16]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506

    [17]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503

    [18]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [19]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507

    [20]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108

    [21]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501

    [22]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201 (in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012物理学报 61 035201]

    [23]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505

  • [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229

    [2]

    Femandez-Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937

    [3]

    Femandez-Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Phys. 60 81

    [5]

    Li M, Michael A V, Steven K D, Michael J B 2000 IEEE Trans. Plasma Sci. 28 248

    [6]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [7]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501

    [8]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Com. Phy. 27 883 (in Chinese)[宫野, 段萍, 张建红, 邹秀, 刘金远, 刘悦2010计算物理 27 883]

    [9]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032

    [10]

    Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹秀, 籍延坤, 邹滨雁2010物理学报 59 1902]

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma Phys. 76 247

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201

    [14]

    Ghomi H, Khoramabadi M 2011 J. Fusion Energ. 30 481

    [15]

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204 (in Chinese)[邱明辉, 刘惠平, 邹秀2012物理学报 61 155204]

    [16]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506

    [17]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503

    [18]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [19]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507

    [20]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108

    [21]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501

    [22]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201 (in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012物理学报 61 035201]

    [23]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505

  • [1] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [2] 刘惠平, 邹秀. 电子和负离子的反射运动对碰撞电负性磁鞘的影响. 物理学报, 2020, 69(2): 025201. doi: 10.7498/aps.69.20191307
    [3] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究. 物理学报, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [4] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [5] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [6] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究. 物理学报, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [7] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [8] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据. 物理学报, 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [9] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [10] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [11] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [12] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [13] 王继志, 王美琴, 王英龙. 一种基于混沌的带密钥Hash函数的碰撞问题及分析. 物理学报, 2008, 57(5): 2737-2742. doi: 10.7498/aps.57.2737
    [14] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [15] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运. 物理学报, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [16] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构. 物理学报, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [17] 段芳莉, 雒建斌, 温诗铸. 纳米粒子与单晶硅表面碰撞的反弹机理研究. 物理学报, 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [18] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构. 物理学报, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [19] 谷云鹏, 马腾才. 粒子束对玻姆鞘层判据的影响. 物理学报, 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
    [20] 李延龄, 罗成林. Si60团簇的结构及其与Si(111)面间碰撞的分子动力学模拟. 物理学报, 2002, 51(11): 2589-2594. doi: 10.7498/aps.51.2589
计量
  • 文章访问数:  3028
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 修回日期:  2016-08-12
  • 刊出日期:  2016-12-05

碰撞参数对磁化电负性等离子体鞘层结构的影响

  • 1. 大连交通大学材料科学与工程学院, 大连 116028;
  • 2. 大连交通大学理学院, 大连 116028
  • 通信作者: 刘惠平, lhp@djtu.edu.cn
    基金项目: 国家自然科学基金(批准号:10605008,51372026)资助的课题.

摘要: 数值研究了离子马赫数的取值和碰撞参数对由热电子、热负离子和冷正离子构成的磁化电负性等离子体鞘层结构的影响.通过理论推导得到了鞘层模型的玻姆判据的表达式,并得到了不同离子马赫数情况下鞘层的正离子密度分布和净电荷分布曲线,还进一步得到了几个不同碰撞参数下鞘层的带电粒子密度、净电荷以及电势分布曲线.结果表明:离子马赫数取值不同对应不同的鞘层结构;碰撞使鞘层中正离子密度增加,使电子密度更快减小到零,对负离子密度分布影响不明显;碰撞使净电荷密度的峰值幅度增加并向鞘层边缘移动,使鞘层中电势值升高并使鞘层厚度减小.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回