搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽绝对禁带的一维磁性光子晶体结构

陈敏 万婷 王征 罗朝明 刘靖

引用本文:
Citation:

宽绝对禁带的一维磁性光子晶体结构

陈敏, 万婷, 王征, 罗朝明, 刘靖

One-dimensional magnetic photonic crystal structures with wide absolute bandgaps

Chen Min, Wan Ting, Wang Zheng, Luo Zhao-Ming, Liu Jing
PDF
导出引用
  • 提出了一种具有宽绝对禁带的一维磁性光子晶体结构,该结构由相同的折射率和物理厚度以及不同的波阻抗的两种磁性材料交替组合而成.通过传输矩阵法分析可得,相比于非磁性光子晶体,该光子晶体的禁带对入射角和偏振都不敏感,从而具有更宽的绝对禁带.合适地调节两种磁性材料的参数,增加两者波阻抗的差值,该光子晶体的绝对禁带宽度也相应地增加;调节两种磁性材料的物理厚度,其绝对禁带中心也会随之调整;最后,将两个满足上述条件的一维磁性光子晶体组成异质结构,其第一禁带宽度与禁带中心之间的比值可达到1.41以上.
    The photonic absolute bandgaps have many potential applications in specific fields, and some methods to enlarge the absolute bandgaps, such as adjusting the material and the rotational symmetry, constituting a heterostructure have been explored. Recently, with the occurring of metamaterial, the photonic crystal based on metamaterial has also realized the wide absolute bandgaps. However, the metamaterial is an artificially structured material of which the construction is more complicated. In this paper, one-dimensional magnetic photonic crystal structure with wide absolute bandgaps is proposed, which is composed of two kinds of magnetic materials with the same refractive index and physical thickness but different wave impedances. First of all, the transmission properties of one-dimensional magnetic and non-magnetic photonic crystals with the same wave impedance ratio are studied by using transfer matrix method. It is shown that the normalized frequency bandwidth of magnetic photonic crystal, i. e. the ratio of the band of bandgap to its center, is 0.41, while the normalized frequency bandwidth of the non-magnetic photonic crystal is 0.14. From the results, we can conclude that the absolute bandgap of the above magnetic photonic crystal is wider than that of non-magnetic photonic crystal because the former bandgap is not sensitive to the incident angle nor polarization. Secondly, we adjust the wave impedance ratios of the two kinds of magnetic materials and make them respectively reach 2, 4 and 6, with the refractive index and the physical thickness kept unchanged. By analyzing their transmission properties, it is found that the normalized frequency bandwidths of the absolute bandgaps are respectively 0.47, 0.84 and 1.03, and the greater the difference between the two wave impedances, the wider the normalized frequency bandwidth is. Thirdly, we investigate the influence of the per-layer physical thickness of the magnetic material on the bandgap, with the other parameters remaining unchanged. It is shown that the center of the absolute bandgap shifts toward high frequency with the decrease of the per-layer physical thickness. Finally, a kind of heterostructure is constructed by the above two one-dimensional magnetic photonic crystals. The normalized frequency ranges of the first and the second absolute bandgap of one magnetic photonic crystal structure are respectively 1.18-2.85 and 5.37-6.85. The normalized frequency range of the absolute bandgap of the other magnetic photonic crystal is 2.37-5.68. The normalized frequency range of the absolute bandgap of the heterostructure can be enlarged to 1.18-6.85 and the corresponding normalized frequency bandwidth can reach more than 1.41. The wide absolute bandgaps can be applied to integrated optics, optical fiber communication and high-power laser systems, according to which we may design the polarization-independent and omnidirectional devices such as reflectors, optical switchers and optical filters.
      通信作者: 罗朝明, zhaomingluo@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61205126)、湖南省科技计划项目(批准号:2016TP1021)和湖南省和湖南理工学院大学生实验项目(批准号:湘教通[2016]283号,校[2016]21号)资助的课题.
      Corresponding author: Luo Zhao-Ming, zhaomingluo@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 61205126), the Science and Technology Program of Hunan Province, China(Grant No. 2016TP1021), and the Experimental Project of College Students in Hunan Province and Hunan Institute of Science and Technology, China.
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals:Molding the Flow of Light(Princeton:Princeton Univ. Press)

    [4]

    Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer-Verlag)

    [5]

    Dowling J P 1998 Science 282 1841

    [6]

    Liu H, Yao J Q, Li E B, Wen W Q, Zhang Q, Wang P 2006 Acta Phys. Sin. 55 230 (in Chinese)[刘欢, 姚建铨, 李恩邦, 温午麒, 张强, 王鹏2006物理学报55 230]

    [7]

    Cheng X P, Cao Q X 2008 Acta Phys. Sin. 57 3249 (in Chinese)[程旭攀, 曹全喜2008物理学报57 3249]

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [10]

    Jiang L, Zheng G, Shi L, Yuan J, Li X 2008 Opt. Commun. 281 4882

    [11]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [12]

    Lu Y H, Huang M D, Park S Y, Kim P J, Nahm T U, Lee Y P, Rhee J Y 2007 J. Appl. Phys. 101 036110

    [13]

    Luo Z M, Tang Z, Xiang Y, Luo H, Wen S 2009 Appl. Phys. B 94 641

    [14]

    Luo Z M, Qu S, Liu J, Tian P 2013 J. Mod. Opt. 60 171

    [15]

    Luo Z M, Chen M, Liu J, Lei D J 2016 Opt. Commun. 365 120

    [16]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573

    [17]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [18]

    Suthar B, Bhargava A 2012 Opt. Commun. 285 1481

    [19]

    Joseph S, Hafiz A K 2014 Optik 125 2734

    [20]

    Han P, Wang H 2005 J. Opt. Soc. Am. B 22 1571

    [21]

    Feng X, Li H 2013 Eur. Phys. J. D 67 1

    [22]

    Xiang Y, Dai X, Wen S, Fan D 2007 J. Opt. Soc. Am. A 24 A28

    [23]

    Yin C P, Dong J W, Wang H Z 2009 Eur. Phys. J. B 67 221

    [24]

    Ouyang Z B, Mao D, Liu C P, Wang J C 2008 J. Opt. Soc. Am. B 25 297

    [25]

    Yariv A, Yeh P 2007 Optical Electronics in Modern Communications(New York:Oxford University Press) pp199-204

    [26]

    Yeh P 1988 Optical Waves in Layered Media(New York:Wiley) pp58-67

    [27]

    Sigalas M M, Soukoulis C M, Biswas R, Ho K M 1997 Phys. Rev. B 56 959

    [28]

    Teng C C, Zhou W, Zhuang Y Y, Chen H M 2005 Opt. Lett. 30 2936

    [29]

    Kong J A (translated by Wu J) 2003 Electromagnetic Wave Theory (Beijing: Publishing House of Electronics Industry) pp81, 82 (in Chinese) [孔金瓯 著 (吴季 译) 2003电磁波理论(北京:电子工业出版社)第81, 82页]

    [30]

    Wang L G, Chen H, Zhu S Y 2005 Opt. Lett. 30 2936

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Joannopoulos J D, Meade R D, Winn J N 1995 Photonic Crystals:Molding the Flow of Light(Princeton:Princeton Univ. Press)

    [4]

    Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin:Springer-Verlag)

    [5]

    Dowling J P 1998 Science 282 1841

    [6]

    Liu H, Yao J Q, Li E B, Wen W Q, Zhang Q, Wang P 2006 Acta Phys. Sin. 55 230 (in Chinese)[刘欢, 姚建铨, 李恩邦, 温午麒, 张强, 王鹏2006物理学报55 230]

    [7]

    Cheng X P, Cao Q X 2008 Acta Phys. Sin. 57 3249 (in Chinese)[程旭攀, 曹全喜2008物理学报57 3249]

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [10]

    Jiang L, Zheng G, Shi L, Yuan J, Li X 2008 Opt. Commun. 281 4882

    [11]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [12]

    Lu Y H, Huang M D, Park S Y, Kim P J, Nahm T U, Lee Y P, Rhee J Y 2007 J. Appl. Phys. 101 036110

    [13]

    Luo Z M, Tang Z, Xiang Y, Luo H, Wen S 2009 Appl. Phys. B 94 641

    [14]

    Luo Z M, Qu S, Liu J, Tian P 2013 J. Mod. Opt. 60 171

    [15]

    Luo Z M, Chen M, Liu J, Lei D J 2016 Opt. Commun. 365 120

    [16]

    Winn J N, Fink Y, Fan S, Joannopoulos J D 1998 Opt. Lett. 23 1573

    [17]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [18]

    Suthar B, Bhargava A 2012 Opt. Commun. 285 1481

    [19]

    Joseph S, Hafiz A K 2014 Optik 125 2734

    [20]

    Han P, Wang H 2005 J. Opt. Soc. Am. B 22 1571

    [21]

    Feng X, Li H 2013 Eur. Phys. J. D 67 1

    [22]

    Xiang Y, Dai X, Wen S, Fan D 2007 J. Opt. Soc. Am. A 24 A28

    [23]

    Yin C P, Dong J W, Wang H Z 2009 Eur. Phys. J. B 67 221

    [24]

    Ouyang Z B, Mao D, Liu C P, Wang J C 2008 J. Opt. Soc. Am. B 25 297

    [25]

    Yariv A, Yeh P 2007 Optical Electronics in Modern Communications(New York:Oxford University Press) pp199-204

    [26]

    Yeh P 1988 Optical Waves in Layered Media(New York:Wiley) pp58-67

    [27]

    Sigalas M M, Soukoulis C M, Biswas R, Ho K M 1997 Phys. Rev. B 56 959

    [28]

    Teng C C, Zhou W, Zhuang Y Y, Chen H M 2005 Opt. Lett. 30 2936

    [29]

    Kong J A (translated by Wu J) 2003 Electromagnetic Wave Theory (Beijing: Publishing House of Electronics Industry) pp81, 82 (in Chinese) [孔金瓯 著 (吴季 译) 2003电磁波理论(北京:电子工业出版社)第81, 82页]

    [30]

    Wang L G, Chen H, Zhu S Y 2005 Opt. Lett. 30 2936

  • [1] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [2] 沈娟娟, 何兴道, 刘彬, 李淑静. 基于太极形介质柱六角光子晶体禁带特性研究. 物理学报, 2013, 62(8): 084213. doi: 10.7498/aps.62.084213
    [3] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性. 物理学报, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [4] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响. 物理学报, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [5] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [6] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [7] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [8] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [9] 任晓斌, 翟天瑞, 任芝, 林晶, 周静, 刘大禾. 非线性曝光对三维全息光子晶体禁带特性的影响. 物理学报, 2009, 58(5): 3208-3213. doi: 10.7498/aps.58.3208
    [10] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析. 物理学报, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [11] 钟 凯, 张会云, 张玉萍, 李喜福, 王 鹏, 姚建铨. 基于六角结构二维光子晶体绝对带隙的优化设计研究. 物理学报, 2007, 56(12): 7029-7033. doi: 10.7498/aps.56.7029
    [12] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [13] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [14] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [15] 刘 欢, 姚建铨, 李恩邦. 激光全息法制作二、三维光子晶体的模拟计算及禁带分析. 物理学报, 2006, 55(5): 2286-2292. doi: 10.7498/aps.55.2286
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [18] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
    [19] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计. 物理学报, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] 肖三水, 沈林放, 何赛灵. 低频和高频区域内大禁带的二维各向异性光子晶体. 物理学报, 2002, 51(12): 2858-2864. doi: 10.7498/aps.51.2858
计量
  • 文章访问数:  2910
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-22
  • 修回日期:  2016-10-16
  • 刊出日期:  2017-01-05

宽绝对禁带的一维磁性光子晶体结构

  • 1. 湖南理工学院 信息与通信工程学院, 复杂工业物流系统智能控制与优化湖南省重点实验室, 岳阳 414006
  • 通信作者: 罗朝明, zhaomingluo@hnu.edu.cn
    基金项目: 国家自然科学基金(批准号:61205126)、湖南省科技计划项目(批准号:2016TP1021)和湖南省和湖南理工学院大学生实验项目(批准号:湘教通[2016]283号,校[2016]21号)资助的课题.

摘要: 提出了一种具有宽绝对禁带的一维磁性光子晶体结构,该结构由相同的折射率和物理厚度以及不同的波阻抗的两种磁性材料交替组合而成.通过传输矩阵法分析可得,相比于非磁性光子晶体,该光子晶体的禁带对入射角和偏振都不敏感,从而具有更宽的绝对禁带.合适地调节两种磁性材料的参数,增加两者波阻抗的差值,该光子晶体的绝对禁带宽度也相应地增加;调节两种磁性材料的物理厚度,其绝对禁带中心也会随之调整;最后,将两个满足上述条件的一维磁性光子晶体组成异质结构,其第一禁带宽度与禁带中心之间的比值可达到1.41以上.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回