搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外延石墨烯电导率和费米速度随温度变化规律研究

杜一帅 康维 郑瑞伦

引用本文:
Citation:

外延石墨烯电导率和费米速度随温度变化规律研究

杜一帅, 康维, 郑瑞伦

Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature

Du Yi-Shuai, Kang Wei, Zheng Rui-Lun
PDF
导出引用
  • 考虑到原子的非简谐振动和电子-声子相互作用,建立了金属基外延石墨烯的物理模型,用固体物理理论和方法,得到金属基外延石墨烯的电导率和费米速度随温度变化的解析式.以碱金属基底为例,探讨了基底材料和非简谐振动对外延石墨烯电导率和费米速度的影响.结果表明:1)零温情况下,碱金属基外延石墨烯的电导率和费米速度均随基底元素原子序数的增大而增大;2)外延石墨烯的电导率随温度升高而减小,其中,温度较低时时变化较快,而温度较高时则变化很慢,费米速度随温度升高而增大,其变化率随基底材料原子序数的增大而增大;3)原子非简谐振动对外延石墨烯的电导率和费米速度有重要的影响,简谐近似下,费米速度为常数,电导率的温度变化率较大;考虑到原子非简谐项后,费米速度随温度升高而增大,电导率的温度变化率减小;温度愈高,原子振动的非简谐效应愈明显.
    The atomic anharmonic vibration and the electron-phonon interaction are considered, and then a physical model about the metal-based epitaxial graphene is built. Variations of the electrical conductivity and the Fermi velocity with temperature for the metal-based epitaxial graphene are given based on the solid state physics theory or method. The alkali-metal epitaxial graphene is selected as the substrate, and then the influences of substrate material, electron-phonon interaction and the anharmonic vibration on the electrical conductivity and the Fermi velocity of epitaxial graphene are discussed. Some results are shown as follows. Firstly, at zero temperature, the electrical conductivity and the Fermi velocity of the alkali-metal-base epitaxial graphene increase with the number of the atoms in substrate material increasing. Secondly, the electrical conductivity of epitaxial graphene decreases with temperature rising. Furthermore, the variation rate also decreases with temperature rising. Generally, the electrical conductivity originates mainly from electrons and phones. The electronic contribution to the electrical conductivity varies with temperature slowly, but the phone contribution to electrical conductivity varies with temperature evidently. Therefore, the contribution of phonons to electrical conductivity is much larger than that of electrons. Furthermore, the contribution increases with the number of atoms in basal elements. The phonon contribution to conductivity decreases with temperature rising, but it is unrelated to the basal elements. Thirdly, the Fermi velocity of the epitaxial graphene increases with temperature slowly. The variation of the Fermi velocity with temperature decreases with the increase of interaction between the graphene and the basal atoms. However, it increases with the number of atoms of the basal materials. The anharmonic effect causes important influences on the electrical conductivity and the Fermi velocity. Under the harmonic approximation the velocity is constant. However, the conductance increases rapidly with temperature. With considering the atomic anharmonic terms, the Fermi velocity increases with temperature. The variation of the electrical conductivity with temperature increasing becomes slower. If the temperature is higher, the anharmonic effects become more evident.
      通信作者: 郑瑞伦, zhengrui@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574253)、重庆市基础与前沿研究项目(批准号:cstc2015jcyjA40054)和教育部留学回国人员基金(批准号:[2014]1685)资助的课题.
      Corresponding author: Zheng Rui-Lun, zhengrui@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11574253), Chongqing Foundation and Advanced Research Projects, China(Grant No. cstc2015jcyjA40054) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars(Grant No. State([2014]1685)).
    [1]

    Davydov S Yu 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [2]

    Tian W, Yuan P F, Yu Z L 2015 Acta Phys. Sin. 64 046102 (in Chinese)[田文, 袁鹏飞, 禹卓良2015物理学报64 046102]

    [3]

    Wei C, Li J, Liu Q B, Cai S J, Feng Z H 2015 Acta Phys. Sin. 64 038102 (in Chinese)[蔚翠, 李佳, 刘庆彬, 蔡树均, 冯值红2015物理学报64 038102]

    [4]

    Tang J, Liu Z L, Kang C Y, Yan W S, Xu P S, Pan H B, Wei S Q, Gao Y Q, Xu X G 2010 Acta Phys.-Chim. Sin. 26 253 (in Chinese)[唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高压强, 徐现刚2010物理化学学报26 253]

    [5]

    Davydov S Yu 2012 Phys. Stat. Sol. 54 821(in Russian)

    [6]

    Wang L, Tian L H, Wei G D, Gao F M, Zheng J J, Yang W Y 2011 J. Inorganic Mater. 26 1009 (in Chinese)[王霖, 田林海, 尉国栋, 高凤梅, 郑金桔, 杨为佑2011无机材料学报26 1009]

    [7]

    Tetlow H, Posthuma de Boer J, Ford I J, Vvedensky D D, Coraux J, Kantorovich L 2014 Phys. Reports 542 195

    [8]

    Grneis A 2013 J. Phys.:Condens. Matter 25 043001

    [9]

    Sutter P, Albrecht P, Albrecht P, Sutter E 2010 Appl. Phys. Lett. 97 213101

    [10]

    Wang R, Hao Y, Wang Z, Gong H, Tho J T 2010 Nano Lett. 10 4844

    [11]

    Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Mogome E, Sumitani K, Mizuta N, Ikeda K, Seigi Mizuno S 2012 Carbon 50 57

    [12]

    Davydov S Yu 2011 Tech. Phys. Lett. 37 64

    [13]

    Alisultanov Z Z 2013 Tech. Phys. Lett. 39 32 (in Russian)

    [14]

    Larciprete R, Ulstrup S, Lacovig P, et al. 2012 Acs Nano 6 9551

    [15]

    Davydov S Yu, Sabinowa G Y 2011 Phys. Stat. Sol. 53 608(in Russian)

    [16]

    Alisultanov Z Z, Kamilov Y K 2014 Phys. Stat. Sol. 56 821(in Russian)

    [17]

    Davydov S Yu 2014 Phys. Stat. Sol. 56 816 (in Russian)

    [18]

    Fang X Y,Yu X X, Zheng H M, Jin H B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245

    [19]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [20]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese)[程正富, 郑瑞伦2016物理学报65 104701]

    [21]

    Davydov S Yu 2011 Tech. Phys. 37 42(in Russian)

    [22]

    Davydov S Yu 2012 Phys. Solid State 54 875

    [23]

    Huang K, Han R Q 2001 Solid-State Physics(Beijing:China Higher Education Press, CHEP) pp276-282(in Chinese)[黄昆, 韩汝琦2001固体物理学(北京:高等教育出版社)第276–282页]

    [24]

    Zheng R L, Hu X Q, Yang G X 1996 Solid Theory and Application(Chongqing:Southwest Normal University Press) pp267-271(in Chinese)[郑瑞伦, 胡先权, 杨国祥1996固体理论及其应用(重庆:西南师范大学出版社)第267–271页]

    [25]

    Davydov S Yu, Tikhonov S K 1996 Phys. Semicond. Technol. 30 968(in Russian)

    [26]

    Kittel C 1968 Am. J. Phys. 35 547

    [27]

    Yu S, Davydov S Yu 2012 Phys. Semicond. Technol. 46 204(in Russian)

    [28]

    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [29]

    Ma Q F, Fang R S, Xiang L C, Guo Y 1986 Handbook of Thermo-Physical Properties(Beijing:China Agricultural Machinery Press) pp42-54(in Chinese)[马庆方, 方荣生, 项立成, 郭预1986实用热物理性质手册(北京:中国农业机械出版社)第42–54页]

  • [1]

    Davydov S Yu 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [2]

    Tian W, Yuan P F, Yu Z L 2015 Acta Phys. Sin. 64 046102 (in Chinese)[田文, 袁鹏飞, 禹卓良2015物理学报64 046102]

    [3]

    Wei C, Li J, Liu Q B, Cai S J, Feng Z H 2015 Acta Phys. Sin. 64 038102 (in Chinese)[蔚翠, 李佳, 刘庆彬, 蔡树均, 冯值红2015物理学报64 038102]

    [4]

    Tang J, Liu Z L, Kang C Y, Yan W S, Xu P S, Pan H B, Wei S Q, Gao Y Q, Xu X G 2010 Acta Phys.-Chim. Sin. 26 253 (in Chinese)[唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高压强, 徐现刚2010物理化学学报26 253]

    [5]

    Davydov S Yu 2012 Phys. Stat. Sol. 54 821(in Russian)

    [6]

    Wang L, Tian L H, Wei G D, Gao F M, Zheng J J, Yang W Y 2011 J. Inorganic Mater. 26 1009 (in Chinese)[王霖, 田林海, 尉国栋, 高凤梅, 郑金桔, 杨为佑2011无机材料学报26 1009]

    [7]

    Tetlow H, Posthuma de Boer J, Ford I J, Vvedensky D D, Coraux J, Kantorovich L 2014 Phys. Reports 542 195

    [8]

    Grneis A 2013 J. Phys.:Condens. Matter 25 043001

    [9]

    Sutter P, Albrecht P, Albrecht P, Sutter E 2010 Appl. Phys. Lett. 97 213101

    [10]

    Wang R, Hao Y, Wang Z, Gong H, Tho J T 2010 Nano Lett. 10 4844

    [11]

    Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Mogome E, Sumitani K, Mizuta N, Ikeda K, Seigi Mizuno S 2012 Carbon 50 57

    [12]

    Davydov S Yu 2011 Tech. Phys. Lett. 37 64

    [13]

    Alisultanov Z Z 2013 Tech. Phys. Lett. 39 32 (in Russian)

    [14]

    Larciprete R, Ulstrup S, Lacovig P, et al. 2012 Acs Nano 6 9551

    [15]

    Davydov S Yu, Sabinowa G Y 2011 Phys. Stat. Sol. 53 608(in Russian)

    [16]

    Alisultanov Z Z, Kamilov Y K 2014 Phys. Stat. Sol. 56 821(in Russian)

    [17]

    Davydov S Yu 2014 Phys. Stat. Sol. 56 816 (in Russian)

    [18]

    Fang X Y,Yu X X, Zheng H M, Jin H B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245

    [19]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [20]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese)[程正富, 郑瑞伦2016物理学报65 104701]

    [21]

    Davydov S Yu 2011 Tech. Phys. 37 42(in Russian)

    [22]

    Davydov S Yu 2012 Phys. Solid State 54 875

    [23]

    Huang K, Han R Q 2001 Solid-State Physics(Beijing:China Higher Education Press, CHEP) pp276-282(in Chinese)[黄昆, 韩汝琦2001固体物理学(北京:高等教育出版社)第276–282页]

    [24]

    Zheng R L, Hu X Q, Yang G X 1996 Solid Theory and Application(Chongqing:Southwest Normal University Press) pp267-271(in Chinese)[郑瑞伦, 胡先权, 杨国祥1996固体理论及其应用(重庆:西南师范大学出版社)第267–271页]

    [25]

    Davydov S Yu, Tikhonov S K 1996 Phys. Semicond. Technol. 30 968(in Russian)

    [26]

    Kittel C 1968 Am. J. Phys. 35 547

    [27]

    Yu S, Davydov S Yu 2012 Phys. Semicond. Technol. 46 204(in Russian)

    [28]

    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [29]

    Ma Q F, Fang R S, Xiang L C, Guo Y 1986 Handbook of Thermo-Physical Properties(Beijing:China Agricultural Machinery Press) pp42-54(in Chinese)[马庆方, 方荣生, 项立成, 郭预1986实用热物理性质手册(北京:中国农业机械出版社)第42–54页]

  • [1] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响. 物理学报, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [2] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [3] 蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红. Si面4H-SiC衬底上外延石墨烯近平衡态制备. 物理学报, 2014, 63(3): 038102. doi: 10.7498/aps.63.038102
    [4] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [5] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响. 物理学报, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [6] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响. 物理学报, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [7] 潘佳奇, 朱承泉, 李育仁, 兰伟, 苏庆, 刘雪芹, 谢二庆. 非化学计量比靶材溅射制备Cu-Al-O薄膜的光学电学性质研究. 物理学报, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [8] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [9] 何国荣, 郑婉华, 渠红伟, 杨国华, 王 青, 曹玉莲, 陈良惠. 键合界面对面发射激光器光与热性质的影响. 物理学报, 2008, 57(3): 1840-1845. doi: 10.7498/aps.57.1840
    [10] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [11] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [12] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [13] 檀满林, 朱嘉琦, 张化宇, 朱振业, 韩杰才. 硼掺杂对四面体非晶碳膜电导性能的影响. 物理学报, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [14] 王 杰, 徐友龙, 陈 曦, 杜显锋, 李喜飞. 电化学法制备高密度导电聚吡咯的性能研究. 物理学报, 2007, 56(7): 4256-4261. doi: 10.7498/aps.56.4256
    [15] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响. 物理学报, 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [16] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [17] 余云鹏, 林璇英, 林舜辉, 黄 锐. 光照和偏压对微晶硅薄膜室温电导的影响. 物理学报, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [18] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [19] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [20] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响. 物理学报, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
计量
  • 文章访问数:  5283
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-14
  • 修回日期:  2016-10-16
  • 刊出日期:  2017-01-05

外延石墨烯电导率和费米速度随温度变化规律研究

  • 1. 重庆文理学院电子电气工程学院, 永川 402160;
  • 2. 重庆邮电大学理学院, 重庆 400065
  • 通信作者: 郑瑞伦, zhengrui@swu.edu.cn
    基金项目: 国家自然科学基金(批准号:11574253)、重庆市基础与前沿研究项目(批准号:cstc2015jcyjA40054)和教育部留学回国人员基金(批准号:[2014]1685)资助的课题.

摘要: 考虑到原子的非简谐振动和电子-声子相互作用,建立了金属基外延石墨烯的物理模型,用固体物理理论和方法,得到金属基外延石墨烯的电导率和费米速度随温度变化的解析式.以碱金属基底为例,探讨了基底材料和非简谐振动对外延石墨烯电导率和费米速度的影响.结果表明:1)零温情况下,碱金属基外延石墨烯的电导率和费米速度均随基底元素原子序数的增大而增大;2)外延石墨烯的电导率随温度升高而减小,其中,温度较低时时变化较快,而温度较高时则变化很慢,费米速度随温度升高而增大,其变化率随基底材料原子序数的增大而增大;3)原子非简谐振动对外延石墨烯的电导率和费米速度有重要的影响,简谐近似下,费米速度为常数,电导率的温度变化率较大;考虑到原子非简谐项后,费米速度随温度升高而增大,电导率的温度变化率减小;温度愈高,原子振动的非简谐效应愈明显.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回