搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属价电子结构对磁性和电输运性质的影响

齐伟华 马丽 李壮志 唐贵德 吴光恒

引用本文:
Citation:

金属价电子结构对磁性和电输运性质的影响

齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒

Dependences of valence electronic structure on magnetic moment and electrical resistivity of metals

Qi Wei-Hua, Ma Li, Li Zhuang-Zhi, Tang Gui-De, Wu Guang-Heng
PDF
导出引用
  • 本文以原子物理学中电子按能级分布理论为基础,提出一个关于金属磁性的新的巡游电子模型:在形成金属的过程中由于受到电子间泡利排斥力的作用,Fe,Ni,Co原子的大部分4s电子进入3d轨道,只有一少部分4s电子成为自由电子;最外层3d轨道的电子有一定概率在离子实间巡游,形成巡游电子;其余的3d电子为局域电子.因此,由Fe,Ni,Co金属的平均原子磁矩实验值2.22,0.62和1.72 B,计算出Fe,Ni,Co金属中平均每个原子贡献的自由电子数目为0.22,0.62和0.72,从而解释了为什么Fe,Ni,Co金属的电阻率依次减小.应用这个模型计算出的平均每个原子的3d电子数为7.78,9.38和8.28,与金属能带论计算结果(7.4,9.4和8.3)比较接近,但是本文的方法更加简单、有效,易于理解.这为进一步澄清金属与合金的价电子结构提供了新思路.
    Conventionally, the energy band theory is used to explain the magnetic and electrical transport properties of metals. However, so far, there has been no quantitative explanation of the relations between the average magnetic moment per atom and the resistivity for Fe, nor Ni, nor Co metals. In this paper, a new itinerant electron model for magnetic metal is proposed on the basis of electron distribution theory at the energy level. 1) In the process of free atoms forming the metal solid, most of the 4s electrons of Fe, Ni and Co enter into the 3d orbits subjected to the Pauli repulsive force, and the remaining 4s electrons form free electrons. 2) Since the average number of 3d electrons is not an integer, a part of atoms have one 3d electron more than the other atoms. These excess 3d electrons have a certain probability to itinerate between the 3d orbits of the adjacent atoms as itinerant electrons; and the other 3d electrons are local electrons. 3) The transition probability of itinerant electrons is very low, thus the contribution to metal resistivity from itinerant electrons is far lower than that from free electrons. Resistivity of metal decreases with increasing the number of free electrons. Therefore, using the observed values of average atomic magnetic moments, 2.22, 0.62 and 1.72 B, the average numbers of free electrons in Fe, Ni and Co can be calculated to be 0.22, 0.62 and 0.72, respectively. This is the reason why the electrical resistivities of Fe, Ni and Co (8.6, 6.14 and 5.57 -cm) decease successively. In addition, according to this model, the average number of 3d electrons per atom in Ni metal is 9.38. This indicates that 38% of atoms in Ni metal have ten 3d electrons, forming a full 3d sub-shell, as in Cu or Zn atoms. The 3d electrons in these atoms are difficult to itinerate or exchange. This may be the reason why the Curie temperature of Ni metal (631 K) is far lower than those of Fe and Co metals (1043 and 1404 K). On the basis of the energy band theory, the numbers of 3d electrons in Fe, Ni and Co metals are 7.4, 9.4 and 8.3, which are close to our results (7.78, 9.38 and 8.28), respectively. This indicates that our model is consistent with the energy band theory. Compared with the complex energy band theory, a simple and effective method on investigating valence electron structures through the experimental average magnetic moments per atom in a metal is presented based on our model. Therefore, the new itinerant electron model may be a new clue to understanding the electronic structure of metals and alloys.
      通信作者: 唐贵德, tanggd@hebtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174069)、河北省自然科学基金(批准号:A2015205111)、河北省应用基础研究计划重点基础研究项目(批准号:16961106D)和河北省教育厅青年基金(批准号:QN2016015)资助的课题.
      Corresponding author: Tang Gui-De, tanggd@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174069), the Natural Science Foundation of Hebei Province, China (Grant No. A2015205111), the Key Item Science Foundation of Hebei Province, China (Grant No. 16961106D), and the Young Scholar Science Foundation of the Education Department of Hebei Province, China (Grant No. QN2016015).
    [1]

    Ida S, Ono K, Kozaki H (translated by Zhang Z X) 1979 Data on Physics in Common Use(Beijing:Science Press) p133(in Chinese)[饭田修一, 大野和郎, 神前熙编(张质贤译) 1979物理学常用数表(北京:科学出版社)第133页]

    [2]

    Dai D S, Qian K M 1986 Ferromagnetism (Beijing:Science Press) p320(in Chinese)[戴道生, 钱昆明1986铁磁学(上册) (北京:科学出版社)第320页]

    [3]

    Stöhr J, Siegmann H C (translated by Ji Y) 2012 Magnetism:From Fundamentals to Nanoscale Dynamics (Beijing:Higher Education Press) p450(in Chinese)[Stöhr J, Siegmann H C著(姬扬译) 2012磁学:从基础知识到纳米尺度超快动力学(北京:高等教育出版社)第450页]

    [4]

    Johnson P D 1997 Rep. Prog. Phys. 60 1217

    [5]

    Sánchez-Barriga J, Minár J, Braun J, Varykhalov A, Boni V, Marco I D, Rader O, Bellini V, Manghi F, Ebert H, Katsnelson M I, Lichtenstein A I, Eriksson O, Eberhardt W, Drr H A, Fink J 2010 Phys. Rev. B 82 104414

    [6]

    Stearns M B 1973 Phys. Rev. B 8 4383

    [7]

    Stearns M B 1978 Phys. Today 31(4) 34

  • [1]

    Ida S, Ono K, Kozaki H (translated by Zhang Z X) 1979 Data on Physics in Common Use(Beijing:Science Press) p133(in Chinese)[饭田修一, 大野和郎, 神前熙编(张质贤译) 1979物理学常用数表(北京:科学出版社)第133页]

    [2]

    Dai D S, Qian K M 1986 Ferromagnetism (Beijing:Science Press) p320(in Chinese)[戴道生, 钱昆明1986铁磁学(上册) (北京:科学出版社)第320页]

    [3]

    Stöhr J, Siegmann H C (translated by Ji Y) 2012 Magnetism:From Fundamentals to Nanoscale Dynamics (Beijing:Higher Education Press) p450(in Chinese)[Stöhr J, Siegmann H C著(姬扬译) 2012磁学:从基础知识到纳米尺度超快动力学(北京:高等教育出版社)第450页]

    [4]

    Johnson P D 1997 Rep. Prog. Phys. 60 1217

    [5]

    Sánchez-Barriga J, Minár J, Braun J, Varykhalov A, Boni V, Marco I D, Rader O, Bellini V, Manghi F, Ebert H, Katsnelson M I, Lichtenstein A I, Eriksson O, Eberhardt W, Drr H A, Fink J 2010 Phys. Rev. B 82 104414

    [6]

    Stearns M B 1973 Phys. Rev. B 8 4383

    [7]

    Stearns M B 1978 Phys. Today 31(4) 34

  • [1] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [2] 刘红艳, 柳祝红, 李歌天, 马星桥. Ga含量对Mn2-xNiGa1+x结构和磁性的影响. 物理学报, 2016, 65(4): 048102. doi: 10.7498/aps.65.048102
    [3] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [4] 秦健萍, 梁瑞瑞, 吕瑾, 武海顺. ComAln(m+n ≤ 6)团簇的结构和磁性理论研究. 物理学报, 2014, 63(13): 133102. doi: 10.7498/aps.63.133102
    [5] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [6] 吕瑾, 秦健萍, 武海顺. ConAl (n= 18)合金团簇结构和磁性质研究. 物理学报, 2013, 62(5): 053101. doi: 10.7498/aps.62.053101
    [7] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [8] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [9] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [10] 姚仲瑜, 傅军, 龚少华, 张月胜, 姚凯伦. 晶格各向同性应变对闪锌矿结构CrS和CrSe的半金属性和磁性的影响. 物理学报, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [11] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [12] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [14] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [16] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [17] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [18] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [19] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究. 物理学报, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [20] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
计量
  • 文章访问数:  3140
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-10
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-01-20

金属价电子结构对磁性和电输运性质的影响

  • 1. 河北师范大学物理科学与信息工程学院, 河北省新型薄膜材料实验室, 石家庄 050024;
  • 2. 北京凝聚态物理国家实验室, 中国科学院物理研究所, 北京 100190
  • 通信作者: 唐贵德, tanggd@hebtu.edu.cn
    基金项目: 国家自然科学基金(批准号:11174069)、河北省自然科学基金(批准号:A2015205111)、河北省应用基础研究计划重点基础研究项目(批准号:16961106D)和河北省教育厅青年基金(批准号:QN2016015)资助的课题.

摘要: 本文以原子物理学中电子按能级分布理论为基础,提出一个关于金属磁性的新的巡游电子模型:在形成金属的过程中由于受到电子间泡利排斥力的作用,Fe,Ni,Co原子的大部分4s电子进入3d轨道,只有一少部分4s电子成为自由电子;最外层3d轨道的电子有一定概率在离子实间巡游,形成巡游电子;其余的3d电子为局域电子.因此,由Fe,Ni,Co金属的平均原子磁矩实验值2.22,0.62和1.72 B,计算出Fe,Ni,Co金属中平均每个原子贡献的自由电子数目为0.22,0.62和0.72,从而解释了为什么Fe,Ni,Co金属的电阻率依次减小.应用这个模型计算出的平均每个原子的3d电子数为7.78,9.38和8.28,与金属能带论计算结果(7.4,9.4和8.3)比较接近,但是本文的方法更加简单、有效,易于理解.这为进一步澄清金属与合金的价电子结构提供了新思路.

English Abstract

参考文献 (7)

目录

    /

    返回文章
    返回