x

留言板

 引用本文:
 Citation:

Hybrid algorithm for composite electromagnetic scattering from the multi-target on and above rough sea surface

Li Bing, Ma Meng-Chen, Lei Ming-Zhu
PDF
• 摘要

针对粗糙海面与其上方多目标复合的情形，常用算法存在计算量过大、计算时间太长等缺点，本文采用基尔霍夫近似法与矩量法结合的混合算法可以大大简化计算量、节省时间.本文首先通过蒙特卡罗的方法模拟一维PM粗糙海面，并与粗糙海面上方多目标建立复合模型；然后对矩量法结合基尔霍夫近似法的混合算法做了详细的公式推导，得到了复合散射系数，并且分析了不同入射角、目标高度、目标间距、目标尺寸、风速等参数对复合电磁散射特性的影响.实验结果表明，针对粗糙海面与其上方多目标复合的情形，采用矩量法结合基尔霍夫近似法的混合算法不但可以保证准确性，而且可以大幅度减少计算所用时间（混合算法用时占矩量法的19%），对大尺寸粗糙面和复杂的复合模型优势尤为明显.

Abstract

In the study of electromagnetic scattering of multi-target composite on and above the rough sea surface, the common algorithm such as the method of moment analyzes the relationship between the target and the rough sea surface point by point, so the common algorithm usually requires massive computation and a lot of time. In this paper, the rough sea surface is described by Pierson-Moscowitz (PM) spectrum and Monte Carlo method, and the composite electromagnetic scattering from multiple conductor flying targets above the rough sea surface is investigated by using the hybrid algorithm-the method of moment in the Kirchhoff approximation. The composite scattering region is divided into target region and rough sea surface region. The target region and the rough sea surface region are investigated by using the method of moment, and the Kirchhoff approximation, respectively. The formulas of the hybrid algorithm in different polarizations are derived in detail, and the scattering coefficients in different incident angles, target heights, target sizes, target distances and wind velocities are calculated in detail. The characteristics of the composite scattering coefficient from the multiple conductor flying target above the rough sea surface are also obtained. Results show that the hybrid algorithm, i. e., the combination of method of moment and the Kirchhoff approximation, can obtain higher accuracy, and reduce the computation time efficiently. The computation time used by the hybrid algorithm is 19% of that by using the method of moment. Moreover, the performance becomes more favorable with the increase of size of rough sea surface.

作者及机构信息

通信作者: 李冰, libing_paper@163.com
• 基金项目: 国家自然科学基金（批准号：51307026）、黑龙江省科学基金（批准号：E201347）和哈尔滨市科技创新人才研究专项基金（批准号：RC2015QN020027）资助的课题.

Authors and contacts

Corresponding author: Li Bing, libing_paper@163.com
• Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51307026), the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201347), and the Special Research Funds for Innovative Talents of Science and Technology of Harbin City, China (Grant No. RC2015QN020027).

参考文献

 [1] Zamani H, Tavakoli A, Dehmollaian M 2016IEEE Trans.Geosci.Remote Sens. 54 3685 [2] Wei Y W, Guo L X 2016Waves Random Complex Media 26 152 [3] Xu R W, Guo L X, HE H J, Liu W 2016 IEEE Geoscience and Remote Sensing Letters 13314 [4] Di Martino G, Iodice A, Riccio D, Ruello G 2015Oceans 2015-Genova Genova, Italy, May 18-21, 2015, p4 [5] Xie T, Perrie W, Shang Z Z, Fang H, Yu W J, He Y J 2016Chin.Phys.B 25 074102 [6] Kim K, Kim J H, Cho D S 2009Ocean Eng. 36 821 [7] Perotoni M B, Barbin S E 2007SbmoIeee Mtt-S International Microwave and Optoelectronics Conference(Vols 1 and 2) Salvador, Brazil Oct.29-Nov.01, 2007 p492 [8] Ren X C, Zhu X M, Liu P 2016Acta Phys.Sin. 65 204101(in Chinese)[任新城, 朱小敏, 刘鹏2016物理学报65 204101] [9] Li W L, Guo L X, Meng X, Liu W 2014Acta Phys.Sin. 63 164102(in Chinese)[李文龙, 郭立新, 孟肖, 刘伟2014物理学报63 164102] [10] Schroder A, Bruns H D, Schuster C 2012IEEE Trans.Antennas Propag. 60 6058 [11] Su X, Wu Z S, Zhang X X 2014Conference on High-Performance Computing in Remote Sensing IV Amsterdam, Netherlandsz Sep.22-23, 2014 p9247 [12] Liu P, Jin YQ 2004IEEE Trans.Antennas Propag. 52 1205 [13] Brennan C, Dung TX, Mullen M, Bradley P, Condom M 2013IEEE Trans.Antennas Propag. 61 3922 [14] Xu R W, Guo L X, Wang R 2014Chin.Phys.B 23 114101 [15] Wang R, Guo L X, Qin S T, Wu Z S 2008Acta Phys.Sin. 57 3473(in Chinese)[王蕊, 郭立新, 秦三团, 吴振森2008物理学报57 3473] [16] Tian W, Ren X C, Guo L X 2015Acta Phys.Sin. 64 174101(in Chinese)[田炜, 任新城, 郭立新2015物理学报64 174101] [17] Zhu Y J, Xie S G 20152nd International Conference on Electrical, Computer Engineering and Electronics Jinan, China May 29-31, 2015 p917 [18] Jia C G, Guo L X, Yang P J 2015IEEE Antennas Wirel.Propag.Lett. 14 217 [19] Chen M S, Wang S W, Ma T, Wu X L 2014Acta Phys.Sin. 63 170301(in Chinese)[陈明生, 王时文, 马韬, 吴先良2014物理学报63 170301] [20] Chai S R, Guo L X 2015Acta Phys.Sin. 64 060301(in Chinese)[柴水荣, 郭立新2015物理学报64 060301] [21] Guo L X, Wang R, Wu Z S 2010Basic Theory and Method of Electromagnetic Scattering from Random Rough Surface(Beijing:Science Press) p199(in Chinese)[郭立新, 王蕊, 吴振森2010随机粗糙面散射的基本理论和方法(北京:科学出版社)第199页] [22] Jakobus U, Landstorfer F M 1995IEEE Trans.Antennas Propag. 43 1123 [23] Kong J O (translated by Wu J)2003Electromagnetic Wave Theory(Beijing:Publishing House of Electronics Industry) pp286-288(in Chinese)[孔金欧著(吴季译)2003电磁波理论(北京:电子工业出版社)第286-288页]

施引文献

•  [1] Zamani H, Tavakoli A, Dehmollaian M 2016IEEE Trans.Geosci.Remote Sens. 54 3685 [2] Wei Y W, Guo L X 2016Waves Random Complex Media 26 152 [3] Xu R W, Guo L X, HE H J, Liu W 2016 IEEE Geoscience and Remote Sensing Letters 13314 [4] Di Martino G, Iodice A, Riccio D, Ruello G 2015Oceans 2015-Genova Genova, Italy, May 18-21, 2015, p4 [5] Xie T, Perrie W, Shang Z Z, Fang H, Yu W J, He Y J 2016Chin.Phys.B 25 074102 [6] Kim K, Kim J H, Cho D S 2009Ocean Eng. 36 821 [7] Perotoni M B, Barbin S E 2007SbmoIeee Mtt-S International Microwave and Optoelectronics Conference(Vols 1 and 2) Salvador, Brazil Oct.29-Nov.01, 2007 p492 [8] Ren X C, Zhu X M, Liu P 2016Acta Phys.Sin. 65 204101(in Chinese)[任新城, 朱小敏, 刘鹏2016物理学报65 204101] [9] Li W L, Guo L X, Meng X, Liu W 2014Acta Phys.Sin. 63 164102(in Chinese)[李文龙, 郭立新, 孟肖, 刘伟2014物理学报63 164102] [10] Schroder A, Bruns H D, Schuster C 2012IEEE Trans.Antennas Propag. 60 6058 [11] Su X, Wu Z S, Zhang X X 2014Conference on High-Performance Computing in Remote Sensing IV Amsterdam, Netherlandsz Sep.22-23, 2014 p9247 [12] Liu P, Jin YQ 2004IEEE Trans.Antennas Propag. 52 1205 [13] Brennan C, Dung TX, Mullen M, Bradley P, Condom M 2013IEEE Trans.Antennas Propag. 61 3922 [14] Xu R W, Guo L X, Wang R 2014Chin.Phys.B 23 114101 [15] Wang R, Guo L X, Qin S T, Wu Z S 2008Acta Phys.Sin. 57 3473(in Chinese)[王蕊, 郭立新, 秦三团, 吴振森2008物理学报57 3473] [16] Tian W, Ren X C, Guo L X 2015Acta Phys.Sin. 64 174101(in Chinese)[田炜, 任新城, 郭立新2015物理学报64 174101] [17] Zhu Y J, Xie S G 20152nd International Conference on Electrical, Computer Engineering and Electronics Jinan, China May 29-31, 2015 p917 [18] Jia C G, Guo L X, Yang P J 2015IEEE Antennas Wirel.Propag.Lett. 14 217 [19] Chen M S, Wang S W, Ma T, Wu X L 2014Acta Phys.Sin. 63 170301(in Chinese)[陈明生, 王时文, 马韬, 吴先良2014物理学报63 170301] [20] Chai S R, Guo L X 2015Acta Phys.Sin. 64 060301(in Chinese)[柴水荣, 郭立新2015物理学报64 060301] [21] Guo L X, Wang R, Wu Z S 2010Basic Theory and Method of Electromagnetic Scattering from Random Rough Surface(Beijing:Science Press) p199(in Chinese)[郭立新, 王蕊, 吴振森2010随机粗糙面散射的基本理论和方法(北京:科学出版社)第199页] [22] Jakobus U, Landstorfer F M 1995IEEE Trans.Antennas Propag. 43 1123 [23] Kong J O (translated by Wu J)2003Electromagnetic Wave Theory(Beijing:Publishing House of Electronics Industry) pp286-288(in Chinese)[孔金欧著(吴季译)2003电磁波理论(北京:电子工业出版社)第286-288页]
•  [1] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549 [2] 王强, 郭立新. 时域混合算法在一维海面与舰船目标复合电磁散射中的应用. 物理学报, 2017, 66(18): 180301. doi: 10.7498/aps.66.180301 [3] 任新成, 朱小敏, 刘鹏. 大地土壤表面与浅埋多目标宽带复合电磁散射研究. 物理学报, 2016, 65(20): 204101. doi: 10.7498/aps.65.204101 [4] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法. 物理学报, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302 [5] 田炜, 任新成, 郭立新. 海面与其上方双矩形截面柱复合散射的混合算法研究. 物理学报, 2015, 64(17): 174101. doi: 10.7498/aps.64.174101 [6] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用. 物理学报, 2013, 62(17): 170301. doi: 10.7498/aps.62.170301 [7] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题 . 物理学报, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801 [8] 王晓冰, 梁子长, 吴振森. 水面目标复合电磁散射的并行迭代快速计算. 物理学报, 2012, 61(12): 124104. doi: 10.7498/aps.61.124104 [9] 王晓冰, 吴振森, 梁子长, 张元. 超低空目标与粗糙面复合散射的波束追踪算法. 物理学报, 2012, 61(24): 244105. doi: 10.7498/aps.61.244105 [10] 梁玉, 郭立新, 王蕊. 粗糙面重构问题的混合算法研究. 物理学报, 2011, 60(3): 034102. doi: 10.7498/aps.60.034102 [11] 姬伟杰, 童创明. 三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法. 物理学报, 2011, 60(1): 010301. doi: 10.7498/aps.60.010301 [12] 秦三团, 郭立新, 代少玉, 龚书喜. 二维随机粗糙面上导体目标复合瞬态散射的混合算法. 物理学报, 2011, 60(7): 074217. doi: 10.7498/aps.60.074217 [13] 王蕊, 郭立新, 王安琪. 不同土壤类型的粗糙地面与其下方埋藏目标复合电磁散射研究. 物理学报, 2010, 59(5): 3179-3186. doi: 10.7498/aps.59.3179 [14] 兰旭东. 混合算法中的耦合判据. 物理学报, 2009, 58(12): 8415-8418. doi: 10.7498/aps.58.8415 [15] 代少玉, 吴振森. 时域小波Galerkin法在有耗地面与任意目标复合散射中的应用. 物理学报, 2008, 57(12): 7635-7640. doi: 10.7498/aps.57.7635 [16] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464 [17] 叶红霞, 金亚秋. 三维随机粗糙面上导体目标散射的解析-数值混合算法. 物理学报, 2008, 57(2): 839-846. doi: 10.7498/aps.57.839 [18] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473 [19] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191 [20] 万　雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
• 文章访问数:  2981
• PDF下载量:  242
• 被引次数: 0
出版历程
• 收稿日期:  2016-10-16
• 修回日期:  2016-11-19
• 刊出日期:  2017-03-05

粗糙海面与其上方多目标复合散射的混合算法

• 1. 哈尔滨工程大学自动化学院, 哈尔滨 150001
• 通信作者: 李冰, libing_paper@163.com
基金项目: 国家自然科学基金（批准号：51307026）、黑龙江省科学基金（批准号：E201347）和哈尔滨市科技创新人才研究专项基金（批准号：RC2015QN020027）资助的课题.

/