搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竞争非局域三次五次非线性介质中孤子的传输特性

黄光侨 林机

引用本文:
Citation:

竞争非局域三次五次非线性介质中孤子的传输特性

黄光侨, 林机

Propagating properties of spatial solitons in the competing nonlocal cubic-quintic nonlinear media

Huang Guang-Qiao, Lin Ji
PDF
导出引用
  • 研究空间光孤子在一维竞争非局域三次五次非线性介质中的新解和传输特性.发现亮孤子在竞争非局域三次自散焦和五次自聚焦非线性介质中存在不稳定区间.在一般非局域程度下,对于不同的三次非线性效应,同相位复合两孤子间表现为吸引或排斥的相互作用,并讨论了折射率的变化.在竞争非局域三次自聚焦和五次自散焦非线性介质中给出了二极、三极和四极孤子能稳定传播的条件,研究发现更高极孤子的传播是不稳定的.还研究了孤子功率与传播常数以及非局域程度的关系.
    We study the new spatial optical solitons and their propagating properties in the one-dimensional nonlocal cubic-quintic (C-Q) nonlinear model by the numerical method. We obtain multi-bright solitons and multipole soliton solutions in the one-dimensional nonlocal C-Q nonlinear model. The propagation of bright solitons is stable in the competing nonlocal cubic self-defocusing and quintic self-focusing nonlinear media when these nonlocal and nonlinear parameters are in the appropriate value domain. Considering the different nonlinear cubic effects, the interaction between two optical solitons with the same phase in the general nonlocal media displays the attraction or the repulsion for different nonlocal and nonlinear parameters. We find that the interval of two solitons affects the interaction between them. The refractive index is changed with the propagating constant when the nonlocal constant d3 is 10. Moreover, the triplepole, quadrupole and pentapole solitons can propagate steadily when the nonlocal parameters are appropriate, but hexa-pole (or above) solitons propagate unsteadily for any nonlocal parameter. Furthermore, we investigate the multi-pole solitons and their propagation stabilities by the Newton difference method and the Fourier split step method, obtain the stable propagation conditions for dipole, triplepole and quadrupole solitons, and find that the propagation of the pentapole and higher-order pole solitons is unstable. We also discuss the interactions of multi-pole solitons when they propagate along the axis z. The interactions are attraction or repulsion when the nonlocal and the nonlinear parameters are different. Meanwhile, we simulate the evolution of the refractive index along the axis z when the spatial optical solitons are multi-pole solitons. Finally, we study the relation between the power of soliton and the propagation constant under different degree of nonlocality. The power of the single bright soliton does not monotonically increase with the increasing propagation constant when the degree of nonlocality d3 is 10. We also derive the relation between the power of dipole bright solitons with the cubic nonlinearity parameter and the propagation constant under different degree of nonlocality. The power decreases monotonically with the increasing propagation constant when the cubic nonlinearity is a certain value or with the increasing cubic nonlinearity when the propagation constant is a certain value.
      通信作者: 林机, linji@zjnu.edu.cn
    • 基金项目: 浙江省自然科学基金重点项目(批准号:LZ15A050001)和国家自然科学基金(批准号:11675146)资助的课题.
      Corresponding author: Lin Ji, linji@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of Zhejiang Province, China (Grant No. LZ15A050001) and the National Natural Science Foundation of China (Grant No. 11675146).
    [1]

    Conti C, Peccianti M, Assanto G 2003Phys.Rev.Lett. 91 073901

    [2]

    Conti C, Peccianti M, Assanto G 2004Phys.Rev.Lett. 92 113902

    [3]

    Fratalocchi A, Assanto G, Brzdakiewicz K A, Karpierz M A 2004Opt.Lett. 29 1530

    [4]

    Conti C, Peccianti M, Assanto G 2006Opt.Lett. 31 2030

    [5]

    Dabby F W, Whinnery J R 1968Appl.Phys.Lett. 13 284

    [6]

    Rotschild C, Cohen O, Manela O, Segev M, Carmon T 2005Phys.Rev.Lett. 95 213904

    [7]

    Xie Y Q, Guo Q 2004Acta Phys.Sin. 53 3020(in Chinese)[谢逸群, 郭旗2004物理学报53 3020]

    [8]

    Cao J N, Guo Q 2005Acta Phys.Sin. 54 3688(in Chinese)[曹觉能, 郭旗2005物理学报54 3688]

    [9]

    Ghofraniha N, Conti C, Ruocco G, Trillo S 2007Phys.Rev.Lett. 99 043903

    [10]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999Phys.Rev.Lett. 83 5198

    [11]

    Rasmussen P D, Bang O, Krolikowski W 2005Phys.Rev.E 72 066611

    [12]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004Opt.Lett. 29 286

    [13]

    Esbensen B K, Bache M, Bang O, Krolikowski W 2012Phys.Rev.A 86 033838

    [14]

    Jia J, Lin J 2012Opt.Express 20 7469

    [15]

    Snyder A W, Mitchell D J 1997Science 276 1538

    [16]

    Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, Malomed B A 2006Phys.Rev.E 74 066614

    [17]

    Doktorov E V, Molchan M A 2008J.Phys.A:Math.Theor. 41 315101

    [18]

    Tsoy E N 2010Phys.Rev.A 82 063829

    [19]

    Zhou Z X, Du Y W, Hou C F, Tian H, Wang Y 2011J.Opt.Soc.Am.B 28 1583

    [20]

    Xu Z Y, Kartashov Y V, Torner L 2005Opt.Lett. 30 3171

    [21]

    Dong L W, Ye F W 2010Phys.Rev.A 81 013815

    [22]

    Kartashov Y V, Vysloukh V A, Torner L 2008Opt.Lett. 33 1747

    [23]

    Du Y W, Zhou Z X, Tian H, Liu D J 2011J.Opt. 13 015201

  • [1]

    Conti C, Peccianti M, Assanto G 2003Phys.Rev.Lett. 91 073901

    [2]

    Conti C, Peccianti M, Assanto G 2004Phys.Rev.Lett. 92 113902

    [3]

    Fratalocchi A, Assanto G, Brzdakiewicz K A, Karpierz M A 2004Opt.Lett. 29 1530

    [4]

    Conti C, Peccianti M, Assanto G 2006Opt.Lett. 31 2030

    [5]

    Dabby F W, Whinnery J R 1968Appl.Phys.Lett. 13 284

    [6]

    Rotschild C, Cohen O, Manela O, Segev M, Carmon T 2005Phys.Rev.Lett. 95 213904

    [7]

    Xie Y Q, Guo Q 2004Acta Phys.Sin. 53 3020(in Chinese)[谢逸群, 郭旗2004物理学报53 3020]

    [8]

    Cao J N, Guo Q 2005Acta Phys.Sin. 54 3688(in Chinese)[曹觉能, 郭旗2005物理学报54 3688]

    [9]

    Ghofraniha N, Conti C, Ruocco G, Trillo S 2007Phys.Rev.Lett. 99 043903

    [10]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999Phys.Rev.Lett. 83 5198

    [11]

    Rasmussen P D, Bang O, Krolikowski W 2005Phys.Rev.E 72 066611

    [12]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004Opt.Lett. 29 286

    [13]

    Esbensen B K, Bache M, Bang O, Krolikowski W 2012Phys.Rev.A 86 033838

    [14]

    Jia J, Lin J 2012Opt.Express 20 7469

    [15]

    Snyder A W, Mitchell D J 1997Science 276 1538

    [16]

    Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, Malomed B A 2006Phys.Rev.E 74 066614

    [17]

    Doktorov E V, Molchan M A 2008J.Phys.A:Math.Theor. 41 315101

    [18]

    Tsoy E N 2010Phys.Rev.A 82 063829

    [19]

    Zhou Z X, Du Y W, Hou C F, Tian H, Wang Y 2011J.Opt.Soc.Am.B 28 1583

    [20]

    Xu Z Y, Kartashov Y V, Torner L 2005Opt.Lett. 30 3171

    [21]

    Dong L W, Ye F W 2010Phys.Rev.A 81 013815

    [22]

    Kartashov Y V, Vysloukh V A, Torner L 2008Opt.Lett. 33 1747

    [23]

    Du Y W, Zhou Z X, Tian H, Liu D J 2011J.Opt. 13 015201

  • [1] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析. 物理学报, 2014, 63(2): 024204. doi: 10.7498/aps.63.024204
    [2] 雍文梅, 陈海军. 线性与非线性光晶格中偶极孤立子的稳定性. 物理学报, 2014, 63(15): 150302. doi: 10.7498/aps.63.150302
    [3] 姜先策, 徐斌, 梁检初, 易林. 中空圆柱形边界条件下非线性介质中的晶格孤子. 物理学报, 2013, 62(11): 110205. doi: 10.7498/aps.62.110205
    [4] 陈海军, 李向富. 二维线性与非线性光晶格中物质波孤立子的稳定性. 物理学报, 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [5] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [6] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析. 物理学报, 2012, 61(15): 154211. doi: 10.7498/aps.61.154211
    [7] 寿倩, 郭旗. 强非局域空间光孤子大相移的理论研究以及应用方案设计. 物理学报, 2011, 60(7): 074215. doi: 10.7498/aps.60.074215
    [8] 寿倩, 江群, 梁炎斌, 胡巍. 强非局域空间光孤子在铅玻璃材料中的传输特性. 物理学报, 2011, 60(9): 094218. doi: 10.7498/aps.60.094218
    [9] 张霞萍. 强非局域空间三维光孤子短程相互作用. 物理学报, 2011, 60(3): 034211. doi: 10.7498/aps.60.034211
    [10] 徐四六, 刘会平, 易林. 强非局域非线性介质中的二维库墨-高斯孤子簇. 物理学报, 2010, 59(2): 1069-1074. doi: 10.7498/aps.59.1069
    [11] 郑亚建, 宣文涛, 陆大全, 欧阳世根, 胡巍, 郭旗. 功率控制的强非局域空间光孤子短程相互作用. 物理学报, 2010, 59(2): 1075-1081. doi: 10.7498/aps.59.1075
    [12] 江群, 寿倩, 郑亚建, 梁炎斌, 胡巍, 郭旗. 非局域空间光孤子在矩形边界铅玻璃中偏转研究. 物理学报, 2010, 59(1): 329-335. doi: 10.7498/aps.59.329
    [13] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [14] 梁炎斌, 郑亚建, 杨平保, 曹龙贵, 陆大全, 胡 巍, 郭 旗. 有界非局域非线性介质中空间光孤子传输的研究. 物理学报, 2008, 57(9): 5690-5698. doi: 10.7498/aps.57.5690
    [15] 朱叶青, 龙学文, 胡 巍, 曹龙贵, 杨平保, 郭 旗. 非局域程度对向列相液晶中空间光孤子的影响. 物理学报, 2008, 57(4): 2260-2265. doi: 10.7498/aps.57.2260
    [16] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用. 物理学报, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [17] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [18] 曹觉能, 郭 旗. 不同非局域程度条件下空间光孤子的传输特性. 物理学报, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [19] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
    [20] 谢逸群, 郭 旗. 非局域克尔介质中空间光孤子的相互作用. 物理学报, 2004, 53(9): 3020-3024. doi: 10.7498/aps.53.3020
计量
  • 文章访问数:  4114
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-11
  • 修回日期:  2016-12-05
  • 刊出日期:  2017-03-05

竞争非局域三次五次非线性介质中孤子的传输特性

  • 1. 浙江师范大学物理系, 金华 321004
  • 通信作者: 林机, linji@zjnu.edu.cn
    基金项目: 浙江省自然科学基金重点项目(批准号:LZ15A050001)和国家自然科学基金(批准号:11675146)资助的课题.

摘要: 研究空间光孤子在一维竞争非局域三次五次非线性介质中的新解和传输特性.发现亮孤子在竞争非局域三次自散焦和五次自聚焦非线性介质中存在不稳定区间.在一般非局域程度下,对于不同的三次非线性效应,同相位复合两孤子间表现为吸引或排斥的相互作用,并讨论了折射率的变化.在竞争非局域三次自聚焦和五次自散焦非线性介质中给出了二极、三极和四极孤子能稳定传播的条件,研究发现更高极孤子的传播是不稳定的.还研究了孤子功率与传播常数以及非局域程度的关系.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回