搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强脉冲离子束辐照金属材料烧蚀产物特性分析

张洁 钟昊玟 沈杰 梁国营 崔晓军 张小富 张高龙 颜莎 喻晓 乐小云

引用本文:
Citation:

强脉冲离子束辐照金属材料烧蚀产物特性分析

张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云

Characteristics of metal ablation product by intense pulsed ion beam irradiation

Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun
PDF
导出引用
  • 强脉冲离子束作为一种闪光热源在材料表面改性方面具有广泛的应用.烧蚀效应对于强脉冲离子束与物质相互作用以及强脉冲离子束薄膜沉积过程具有重要的影响.因此,分析强脉冲离子束的烧蚀过程和机理对于优化其应用具有重要意义.为了研究强脉冲离子束的烧蚀产物特性,采用1.2-1.5 J/cm2的强脉冲离子束辐照纯锌靶材,并使用单晶硅片收集辐照过程中产生的烧蚀产物.通过扫描电子显微镜、能谱仪和高精度天平的分析与测量,得到了烧蚀产物的表面形貌和相关特性等实验结果.结合实验和有限元模拟计算得到的材料表面温度场分布演化结果,可以证明在强脉冲离子束辐照锌靶材的烧蚀过程中会有气态、液态和固态三种不同状态的烧蚀产物产生.
    Intense pulse ion beam (IPIB) has been extensively used in material surface modification. The ablation effect plays an important role in the interaction between IPIB and material. Therefore, the understanding of ablation mechanism is of great significance for IPIB application. Here, to investigate the ablation process and the characteristics of ablation products, pure zinc targets are bombarded by IPIB of 1.2-1.5 J/cm2 energy density at TEMP-4M accelerator. The ablation products are collected by monocrystalline silicon substrates in the IPIB irradiation process. By using the scanning electron microscopy, energy dispersive spectrometer and high precision balance, the surface morphology of the substrate and the characteristics of ablation products are obtained. The majority of observed ablation products are nearly circular particles with diameters of 0.03-2.00 m. There are a small number of zinc droplets and solid debris with large irregular shapes on the silicon substrate. Combining Monte Carlo method and infrared imaging diagnostic results, a heat conduction model is constructed by finite element method to describe the distribution and evolution of thermal field formed by IPIB on a zinc target. The results show that the zinc target can be melted and evaporated under a 1.2 J/cm2 IPIB irradiation. By comparing the experimental resuls with the simulation results, it is found that the gaseous, liquid and solid ablation products are generated collectively in the zinc ablation process. The causes of the different ablation products are also studied.
      通信作者: 乐小云, xyle@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11175012)和国家科技重大专项(批准号:2013GB109004)资助的课题.
      Corresponding author: Le Xiao-Yun, xyle@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175012) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013GB109004).
    [1]

    Humphries J S 1980Nucl.Fusion 20 1549

    [2]

    Rej D J, Davis H A, Olson J C, Remnev G E, ZakoutaevA N, Ryzhkov V A, Struts V K, IsakovI F, ShulovV A, NochevnayaN A, Stinnett R W, NeauE L, YatsuiK, Jiang W 1997J.Vac.Sci.Technol.A 15 1089

    [3]

    Remnev G E, Isakov I F, Opekounov M S, Matvienkoa V M, Ryzhkova V A, Strutsa V K, Grushina I I, Zakoutayeva A N, Potyomkina A V, Tarbokova V A, Pushkaryova A N, Kutuzovb V L, Ovsyannikovb M Y 1999Surf.Coat.Technol. 114 206

    [4]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienkoa V M, Han B X, Xue J M, Wang Y G 2000Rev.Sci.Instrum. 71 1045

    [5]

    Piekoszewski J, Werner Z, Szymczyk W 2001Vacuum 63 475

    [6]

    Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T 1997Jpn.J.Appl.Phys. 36 4928

    [7]

    Davis H A, Johnston G P, Olson J C, Rej D, Waganaar W J, Ruiz C L, Schmidlapp F A, Thompson M O 1999J.Appl.Phys. 85 713

    [8]

    Mei X X, Xu J, Ma T C 2002Acta Phys.Sin. 51 1875(in Chinese)[梅显秀, 徐军, 马腾才2002物理学报51 1875]

    [9]

    Pushkarev A I, Isakova Y I, Vakhrushev D V 2010Phys.Plasmas 17 123112

    [10]

    Isakova Y I 2011IEEE Pulsed Power Conference America, Chicago, June 19-23, 2011 p334

    [11]

    Isakova Y I, Pushkarev A I 2013Instrum.Exp.Tech. 56 185

    [12]

    Yu X, Shen J, Zhong H W, Qu M, Zhang J, Zhang G L, Zhang X F, Yan S, Le X Y 2015Acta Phys.Sin. 64 175204(in Chinese)[喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云2015物理学报64 175204]

    [13]

    Shen J, Yu X, Zhang Y Y, Zhong H W, Zhang J, Qu M, Yan S, Zhang G L, Zhang X F, Le X Y 2015Nucl.Instrum.Methods Phys.Res.Sect.B 365 26

  • [1]

    Humphries J S 1980Nucl.Fusion 20 1549

    [2]

    Rej D J, Davis H A, Olson J C, Remnev G E, ZakoutaevA N, Ryzhkov V A, Struts V K, IsakovI F, ShulovV A, NochevnayaN A, Stinnett R W, NeauE L, YatsuiK, Jiang W 1997J.Vac.Sci.Technol.A 15 1089

    [3]

    Remnev G E, Isakov I F, Opekounov M S, Matvienkoa V M, Ryzhkova V A, Strutsa V K, Grushina I I, Zakoutayeva A N, Potyomkina A V, Tarbokova V A, Pushkaryova A N, Kutuzovb V L, Ovsyannikovb M Y 1999Surf.Coat.Technol. 114 206

    [4]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienkoa V M, Han B X, Xue J M, Wang Y G 2000Rev.Sci.Instrum. 71 1045

    [5]

    Piekoszewski J, Werner Z, Szymczyk W 2001Vacuum 63 475

    [6]

    Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T 1997Jpn.J.Appl.Phys. 36 4928

    [7]

    Davis H A, Johnston G P, Olson J C, Rej D, Waganaar W J, Ruiz C L, Schmidlapp F A, Thompson M O 1999J.Appl.Phys. 85 713

    [8]

    Mei X X, Xu J, Ma T C 2002Acta Phys.Sin. 51 1875(in Chinese)[梅显秀, 徐军, 马腾才2002物理学报51 1875]

    [9]

    Pushkarev A I, Isakova Y I, Vakhrushev D V 2010Phys.Plasmas 17 123112

    [10]

    Isakova Y I 2011IEEE Pulsed Power Conference America, Chicago, June 19-23, 2011 p334

    [11]

    Isakova Y I, Pushkarev A I 2013Instrum.Exp.Tech. 56 185

    [12]

    Yu X, Shen J, Zhong H W, Qu M, Zhang J, Zhang G L, Zhang X F, Yan S, Le X Y 2015Acta Phys.Sin. 64 175204(in Chinese)[喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云2015物理学报64 175204]

    [13]

    Shen J, Yu X, Zhang Y Y, Zhong H W, Zhang J, Qu M, Yan S, Zhang G L, Zhang X F, Le X Y 2015Nucl.Instrum.Methods Phys.Res.Sect.B 365 26

  • [1] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [2] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响. 物理学报, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [3] 喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲离子束辐照薄金属靶的热力学过程研究. 物理学报, 2015, 64(17): 175204. doi: 10.7498/aps.64.175204
    [4] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [5] 席发元, 吕会议. 不同 Ep/q 值的离子与氧化铝毛细孔的相互作用. 物理学报, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [6] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [7] 马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用. 物理学报, 2012, 61(18): 180505. doi: 10.7498/aps.61.180505
    [8] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [9] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [10] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [11] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用. 物理学报, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [12] 黎扬钢, 佘卫龙, 王红成. 光致异构聚合物中相互作用光学空间孤子对的垂直光调控. 物理学报, 2007, 56(4): 2229-2236. doi: 10.7498/aps.56.2229
    [13] 马松华, 强继业, 方建平. (2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤子间的相互作用. 物理学报, 2007, 56(2): 620-626. doi: 10.7498/aps.56.620
    [14] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用. 物理学报, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [15] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响. 物理学报, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [16] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质. 物理学报, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [17] 黄晓菁, 何素贞, 吴晨旭. 金属纳米结构表面吸附的CO分子在外电场中的相互作用. 物理学报, 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [18] 宋克慧. 利用Λ型原子与双模腔场的相互作用进行量子信息处理. 物理学报, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [19] 苏国珍, 陈丽璇. 弱相互作用费米气体的热力学性质. 物理学报, 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [20] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
计量
  • 文章访问数:  2972
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-03-05

强脉冲离子束辐照金属材料烧蚀产物特性分析

  • 1. 北京航空航天大学物理科学与核能工程学院, 北京 100191;
  • 2. 北京航空航天大学, 先进核能材料与物理北京市重点实验室, 北京 100191;
  • 3. 北京大学 重离子物理研究所, 北京 100871
  • 通信作者: 乐小云, xyle@buaa.edu.cn
    基金项目: 国家自然科学基金(批准号:11175012)和国家科技重大专项(批准号:2013GB109004)资助的课题.

摘要: 强脉冲离子束作为一种闪光热源在材料表面改性方面具有广泛的应用.烧蚀效应对于强脉冲离子束与物质相互作用以及强脉冲离子束薄膜沉积过程具有重要的影响.因此,分析强脉冲离子束的烧蚀过程和机理对于优化其应用具有重要意义.为了研究强脉冲离子束的烧蚀产物特性,采用1.2-1.5 J/cm2的强脉冲离子束辐照纯锌靶材,并使用单晶硅片收集辐照过程中产生的烧蚀产物.通过扫描电子显微镜、能谱仪和高精度天平的分析与测量,得到了烧蚀产物的表面形貌和相关特性等实验结果.结合实验和有限元模拟计算得到的材料表面温度场分布演化结果,可以证明在强脉冲离子束辐照锌靶材的烧蚀过程中会有气态、液态和固态三种不同状态的烧蚀产物产生.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回