搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤微结构加工和敏感材料物理融合的光纤传感技术

王闵 刘复飞 周贤 戴玉堂 杨明红

引用本文:
Citation:

基于光纤微结构加工和敏感材料物理融合的光纤传感技术

王闵, 刘复飞, 周贤, 戴玉堂, 杨明红

Optical fiber sensing technologies based on femtosecond laser micromachining and sensitive films

Wang Min, Liu Fu-Fei, Zhou Xian, Dai Yu-Tang, Yang Ming-Hong
PDF
导出引用
  • 将功能敏感材料与光纤在物理层面进行有机融合,充分发挥光纤传感器在结构集成、材料集成等方面的优势,将有望发展新型的光纤传感器件和系统.本文综述了飞秒激光光纤微加工技术分别在标准的单模光纤和光纤光栅上制备微结构,再结合敏感材料制备技术,实现在物理层面上光纤传感器材料和结构的集成和融合,探索实现新型高性能的光纤传感新技术.
    Integration of novel functional material with fiber optic components is one of the new trends in the field of novel sensing technologies. The combination of fiber optics with functional materials offers great potential for realizing the novel sensors. Typically in optical fibre sensing technology, fibre itself acts as sensing element and also transmitting element, such as fiber Bragg grating (FBG), Brillouin or Raman optical time domain reflectometer. However such sensing components can only detect limited physical parameters such as temperature or strain based on the principle of characteristic wavelength drifts. While the idea of optical fiber sensing technology with functional materials is quite different from that of the traditional technology, functional materials can be employed as sensing components, therefore many parameters, including chemical or biological parameters, can be detected, depending on the designs of different sensing films. When compared with the common fiber sensing technologies such as FBG and optical time domain reflectometer, fiber optic sensors based on functional materials show advantages in the diversity of measurement parameters. However, functional materials can be realized by many techniques including e-beam evaporation, magnetron sputtering, spin-coating, electro-chemical plating, etc. The mechanical stability of tiny optical fibers is still problematic, which could be a challenge to industrial applications. In this work, a femtosecond laser fabricated fiber inline micro Mach-Zehnder interferometer with deposited palladium film for hydrogen sensing is presented. Simulation results show that the transmission spectrum of the interferometer is critically dependent on the microcavity length and the refractive index of Pd film, and a short microcavity length corresponds to a high sensitivity. The experimental results obtained in a wavelength region of 1200-1400 nm, and in a hydrogen concentration range of 0-16%, accord well with those of the simulations. The developed system has high potential in hydrogen sensing with high sensitivity. Three-dimensional multitrench microstructures, femtosecond laser ablated in fiber Bragg grating cladding, TbDyFe sputtering are proposed and demonstrated for magnetic field sensing probe. Parameters such as the number of straight microtrenches, translation speed (feed rate), and laser pulse power of laser beam have been systematically varied and optimized. A 5-m-thick giant Terfenol-D magnetostrictive film is sputtered onto FBG microtrenches, and acts as a magnetic sensing transducer. Eight microtrench samples produce the highest central wavelength shift of 120 pm, nearly fivefold more sensitive than nonmicrostructured standard FBG. An increase in laser pulse power to 20 mW generates a magnetic sensitivity of 0.58 pm/mT. Interestingly, reduction in translational speed contributes dramatically to the rise in the magnetic sensitivity of the sample. These sensor samples show magnetic response reversibility and have great potential in the magnetic field sensing domain. Furthermore hydrogen sensors based on fiber Bragg gratings micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film are proposed and demonstrated. The atomic ratio of the two metals is controlled at Pd:Ag=3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5~pm/%H for the same 4% hydrogen concentration. At an ambient temperature of 35℃, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.
      通信作者: 杨明红, minghong.yang@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61290311,61505150,61575151)和湖北省自然科学基金(批准号:2014CFC1138,2015CFA016)资助的课题.
      Corresponding author: Yang Ming-Hong, minghong.yang@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61290311, 61505150, 61575151), and Natural Science Foundation of Hubei Province, China (Grant Nos. 2014CFC1138, 2015CFA016).
    [1]

    Kao T W, Tayler H F 1996 Opt. Lett. 21 615

    [2]

    Rao Y J 2006 Opt. Fiber Technol. 12 227

    [3]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightw. Technol. 21 1320

    [4]

    Woolley A T, Marbles R A 1995 Anal. Chem. 67 3676

    [5]

    Qiu F, Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 94 152

    [6]

    Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 93 309

    [7]

    Ryzhikov A S, Shatokhin A N, Putilin F N, Rumyantseva M N, Gaskov A M, Labeau M 2005 Sensors Actuat. B:Chem. 107 387

    [8]

    Shukla S, Seal S, Ludwig L, Parish C 2004 Sensors Actuat. B:Chem. 97 256

    [9]

    Tan O K, Zhu W, Tse M S, Yao X 1999 Mater. Sci. Eng. B 58 221

    [10]

    Gong J W, Chen Q F, Fei W F, Seal S 2004 Sensors Actuat. B:Chem. 102 117

    [11]

    Yang M H, Dai J X 2012 Photon. Sensors 2 14

    [12]

    Yang M H, Dai J X, Zhou C M, Jiang D S 2009 Opt. Express 17 20777

    [13]

    Butler M A 1994 J. Electrochem. Soc. 138 L46

    [14]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [15]

    Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clment M 2000 Sensors Actuat. B:Chem. 67 57

    [16]

    Dikovska A O, Atanasov P A, Stoyanchov T R, Andreev A T, Karakoleva E I, Zafirova B S 2007 Appl. Opt. 46 2481

    [17]

    Kim K T, Song H S, Mah J P, Hong K B, Im K, Baik S J, Yoon Y I 2007 IEEE Sens. J. 7 1767

    [18]

    Dikovska A O, Atanasov P A, Andreev A T, Zafirova B S, Karakoleva E I, Stoyanchov T R 2007 Appl. Surf. Sci. 254 1087

    [19]

    Yang Z, Zhang M, Liao Y B, Tian Q, Li Q S, Zhang Y, Zhuang Z 2010 Appl. Opt. 49 2736

    [20]

    Liu N, Hui J, Sun C Q, Dong J H, Zhang L Z, Xiao H 2006 Sensors 6 835

    [21]

    Yang M H, Dai J X, Li X B, Wang J J 2010 J. Appl. Phys. 108 033102

    [22]

    Dai J X, Yang M H, Chen Y, Cao K, Liao H S, Zhang P C 2011 Opt. Express 19 6141

    [23]

    Dikovska A O, Atanasova G B, Nedyalkov N N, Stefanov P K, Atanasov P A, Karakoleva E I, Andreev A T 2010 Sensors Actuat. B:Chem. 146 331

    [24]

    Poole Z L, Ohodnicki P, Chen R, Lin Y, Chen K P 2014 Opt. Express 22 2665

    [25]

    Wang M, Yang M, Cheng J, Dai J X, Yang M H, Wang D N 2012 Opt. Lett. 37 1940

    [26]

    Butler M A 1991 J. Eletrochem. Soc. 138 L46

    [27]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [28]

    Park K S, Kim Y H, Eom J B 2011 Opt. Express 19 18190

    [29]

    Wang M, Yang M H, Cheng J, Zhang G L, Liao C R, Wang D N 2013 IEEE Photon. Tech. Lett. 25 713

    [30]

    Zhang Y, Li Q S, Zhuang Z. 2011 Proceedings of 21st International Conference Optis Fiber Sensors Ottawa, Canada, May 15-19, 2011 p775369

    [31]

    Butler M A, Ginley D S 1988 J. Appl. Phys. 64 3706

    [32]

    Karanja J M, Dai Y T, Zhou X, Liu B, Yang M H 2015 Opt. Express 23 31034

    [33]

    Zhang W G, Liu Z L, Yin L M 2011 Acta Opt. Sin. 7 86 (in Chinese)[张伟刚, 刘卓琳, 殷丽梅2011光学学报7 86]

  • [1]

    Kao T W, Tayler H F 1996 Opt. Lett. 21 615

    [2]

    Rao Y J 2006 Opt. Fiber Technol. 12 227

    [3]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightw. Technol. 21 1320

    [4]

    Woolley A T, Marbles R A 1995 Anal. Chem. 67 3676

    [5]

    Qiu F, Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 94 152

    [6]

    Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 93 309

    [7]

    Ryzhikov A S, Shatokhin A N, Putilin F N, Rumyantseva M N, Gaskov A M, Labeau M 2005 Sensors Actuat. B:Chem. 107 387

    [8]

    Shukla S, Seal S, Ludwig L, Parish C 2004 Sensors Actuat. B:Chem. 97 256

    [9]

    Tan O K, Zhu W, Tse M S, Yao X 1999 Mater. Sci. Eng. B 58 221

    [10]

    Gong J W, Chen Q F, Fei W F, Seal S 2004 Sensors Actuat. B:Chem. 102 117

    [11]

    Yang M H, Dai J X 2012 Photon. Sensors 2 14

    [12]

    Yang M H, Dai J X, Zhou C M, Jiang D S 2009 Opt. Express 17 20777

    [13]

    Butler M A 1994 J. Electrochem. Soc. 138 L46

    [14]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [15]

    Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clment M 2000 Sensors Actuat. B:Chem. 67 57

    [16]

    Dikovska A O, Atanasov P A, Stoyanchov T R, Andreev A T, Karakoleva E I, Zafirova B S 2007 Appl. Opt. 46 2481

    [17]

    Kim K T, Song H S, Mah J P, Hong K B, Im K, Baik S J, Yoon Y I 2007 IEEE Sens. J. 7 1767

    [18]

    Dikovska A O, Atanasov P A, Andreev A T, Zafirova B S, Karakoleva E I, Stoyanchov T R 2007 Appl. Surf. Sci. 254 1087

    [19]

    Yang Z, Zhang M, Liao Y B, Tian Q, Li Q S, Zhang Y, Zhuang Z 2010 Appl. Opt. 49 2736

    [20]

    Liu N, Hui J, Sun C Q, Dong J H, Zhang L Z, Xiao H 2006 Sensors 6 835

    [21]

    Yang M H, Dai J X, Li X B, Wang J J 2010 J. Appl. Phys. 108 033102

    [22]

    Dai J X, Yang M H, Chen Y, Cao K, Liao H S, Zhang P C 2011 Opt. Express 19 6141

    [23]

    Dikovska A O, Atanasova G B, Nedyalkov N N, Stefanov P K, Atanasov P A, Karakoleva E I, Andreev A T 2010 Sensors Actuat. B:Chem. 146 331

    [24]

    Poole Z L, Ohodnicki P, Chen R, Lin Y, Chen K P 2014 Opt. Express 22 2665

    [25]

    Wang M, Yang M, Cheng J, Dai J X, Yang M H, Wang D N 2012 Opt. Lett. 37 1940

    [26]

    Butler M A 1991 J. Eletrochem. Soc. 138 L46

    [27]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [28]

    Park K S, Kim Y H, Eom J B 2011 Opt. Express 19 18190

    [29]

    Wang M, Yang M H, Cheng J, Zhang G L, Liao C R, Wang D N 2013 IEEE Photon. Tech. Lett. 25 713

    [30]

    Zhang Y, Li Q S, Zhuang Z. 2011 Proceedings of 21st International Conference Optis Fiber Sensors Ottawa, Canada, May 15-19, 2011 p775369

    [31]

    Butler M A, Ginley D S 1988 J. Appl. Phys. 64 3706

    [32]

    Karanja J M, Dai Y T, Zhou X, Liu B, Yang M H 2015 Opt. Express 23 31034

    [33]

    Zhang W G, Liu Z L, Yin L M 2011 Acta Opt. Sin. 7 86 (in Chinese)[张伟刚, 刘卓琳, 殷丽梅2011光学学报7 86]

  • [1] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [2] 吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君. 基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生. 物理学报, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [3] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [4] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [5] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [6] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [7] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [8] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [9] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [10] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [11] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [12] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [13] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [14] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [15] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [16] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [17] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  4149
  • PDF下载量:  446
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-31
  • 修回日期:  2017-01-27
  • 刊出日期:  2017-04-05

基于光纤微结构加工和敏感材料物理融合的光纤传感技术

  • 1. 武汉纺织大学电子与电气工程学院, 武汉 430200;
  • 2. 武汉理工大学光纤传感技术国家工程实验室, 武汉 430070
  • 通信作者: 杨明红, minghong.yang@whut.edu.cn
    基金项目: 国家自然科学基金(批准号:61290311,61505150,61575151)和湖北省自然科学基金(批准号:2014CFC1138,2015CFA016)资助的课题.

摘要: 将功能敏感材料与光纤在物理层面进行有机融合,充分发挥光纤传感器在结构集成、材料集成等方面的优势,将有望发展新型的光纤传感器件和系统.本文综述了飞秒激光光纤微加工技术分别在标准的单模光纤和光纤光栅上制备微结构,再结合敏感材料制备技术,实现在物理层面上光纤传感器材料和结构的集成和融合,探索实现新型高性能的光纤传感新技术.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回