搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射

李丹 梁君武 刘华伟 张学红 万强 张清林 潘安练

引用本文:
Citation:

CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射

李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练

Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures

Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian
PDF
导出引用
  • 本文利用可控的化学气相沉积法合成了高质量的轴向CdS/CdS0.48Se0.52异质结纳米线.扫描电子显微镜表征发现这些纳米线具有光滑的表面结构;荧光显微图像表明纳米线由CdS和CdSSe两部分沿轴向构成;微区荧光光谱研究表明界面区具有高的结晶质量;光波导研究表明异质结纳米线具有非对称光传输特性;进一步的激发功率依赖的荧光光谱研究表明此结构可以实现红和绿双波长激射,并且红色激射阈值低于绿色激射.理论模拟表明波导光可以两相间有效传输.
    Semiconductor axial nanowire heterostructures are important for realizing the high-performance nano-photonics and opto-electronics devices. Although different IV and III-V semiconductor axial nanowire heterostructures have been successfully prepared in recent decade, few of them focused on the optical properties, such as the waveguide, due to their low light emission efficiencies. The II-VI semiconductor nanowires grown by chemical vapor deposition strategy, such as CdS, CdSe and their alloys, can act as nanoscale waveguide, nanolasers, etc., because of their high optical gains and atomically smooth surfaces. However, it is still a challenge to growing the high-quality II-VI semiconductor axial nanowire heterostructures, owning to the poor controllability of the vapor growth techniques. Here, the CdS/CdSSe axial nanowire heterostructures are prepared with well controlled CVD method under the catalysis of annealed Au nanoparticles. The scanning electron microscope characterization shows that the wires have smooth surfaces with Au particles at the tips, indicating the vapor-liquid-solid growth mechanism for the nanowire heterostructures. The microscope images of the dispersed wires illuminated with a 405 nm laser show that the red and the green segment align axially with a sharp interface, demonstrating the axial alignment of CdS and CdSSe segments. The position related micro-photoluminescence spectra exhibit near band edge emissions of CdS and CdSSe without obvious emission from defect states, which suggests that the wires have highly crystalline quality. The waveguide of the nanowire heterostructures is studied through respectively locally exciting the two ends of the wire with a focused 488 nm laser. The local illuminations at both the CdS end and the CdSSe end result in red emission at the corresponding remote ends of the wires, with the emission intensity of the former being one order lower than that of the later, which is caused by the reabsorption of the green light emission (from CdS segment) in the CdSSe segment. This indicates the asymmetric waveguide in these heterosturctures, which implies that the CdS/CdSSe nanowire heterostructures have the potential applications in the photodiode. Under the pumping of 470 nm femtosecond laser, dual-color (red and green) lasing is realized based on these wires, with the lasing threshold of red light lasing being lower than that of the green one, which results from the larger round-trip loss for the green light arising from the self-absorption in CdSSe segment. To prove that the light can be transfer between the two segments with different refractivities, the waveguide of the nanowire heterostructure is simulated by the COMSOL. The result shows that the light can effectively propagate between CdS and CdSSe segments, which ensures the light-matter interaction in the axial CdS/CdSSe nanowire heterostructures as discussed above. These high-quality CdS/CdSSe axial nanowire heterostructures can be found to have the potential applications in photodiodes, dual-color nanolasers and photodetectors.
      Corresponding author: Zhang Qing-Lin, qinglin.zhang@hnu.edu.cn;anlian.pan@hnu.edu.cn ; Pan An-Lian, qinglin.zhang@hnu.edu.cn;anlian.pan@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374092, 61474040, 61574054, 61505051).
    [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Slight T J, Romeira B, Wang L, Figueiredo J M L, Wasige E, Ironside C N A 2008 IEEE J. Quantum Elect. 44 1158

    [3]

    Hiyamizu S, Mimura T 1982 J. Cryst. Growth 56 455

    [4]

    Harrison T R, Tait G B, McAdoo J A 2005 Proc. SPIE 5732 342

    [5]

    Nylund G, Storm K, Lehmann S, Capasso F, Samuelson L 2016 Nano Lett. 16 1017

    [6]

    de la Mata M, Magen C, Caroff P, Arbiol J 2014 Nano Lett. 14 6614

    [7]

    Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M 2002 Nature 415 617

    [8]

    Wu Y, Fan R, Yang P 2002 Nano Lett. 2 83

    [9]

    Flynn G, Ramasse Q M, Ryan K M 2016 Nano Lett. 16 374

    [10]

    Bjrk M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Nano Lett. 2 87

    [11]

    Fan C, Zhang Q L, Zhu X L, Zhuang X J, Pan A L 2015 Sci. Bull. 60 1674

    [12]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloys Compd. 649 793

    [13]

    Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29

    [14]

    Lou Z, Li L, Shen G 2016 Nanoscale 8 5219

    [15]

    Ma L, Zhang X H, Li H L, Tan H, Yang Y K, Xu Y D, Hu W, Zhu X L, Zhuang X J, Pan A L 2015 Semicond. Sci. Technol. 30 10

    [16]

    Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F, Zou D S 2016 Acta Phys. Sin. 65 118104 (in Chinese) [李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕 2016 物理学报 65 118104]

    [17]

    Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548

    [18]

    Zheng D S, Fang H H, Wang P, Luo W J, Gong Fan, Ho J C, Chen X S, Lu W, Liao L, Wang J L, Hu W D 2016 Adv. Funct. Mater. 26 7690

    [19]

    Pan A L, Wang S Q, Liu R B, Li C R, Zou B S 2005 Small 1 1058

    [20]

    Wang X, Pan A L, Liu D, Bai Y Q, Zhang Z H, Zou B S, Zhu X 2007 Acta Phys. Sin. 56 6352 (in Chinese) [王笑, 潘安练, 刘丹, 白永强, 张朝晖, 邹炳锁, 朱星 2007 物理学报 56 6352]

    [21]

    Zhang Q L, Zhu X L, Li Y Y, Liang J W, Chen T R, Fan P, Zhou H, Hu W, Zhuang X J, Pan A L 2016 Laser Photon. Rev. 10 458

    [22]

    Zhang Q L, Liu H W, Guo P F, Li D, Fan P, Zheng W H, Zhu X L, Jiang Y, Zhou H, Hu W, Zhuang X J, Liu H J, Duan X F, Pan A L 2017 Nano Energy 32 28

    [23]

    Zhang Q L, Wang S W, Liu X X, Chen T R, Li H F, Liang J W, Zheng W H, Agarwal R, Lu W, Pan A L 2016 Nano Energy 30 481

    [24]

    Pan A L, Zhou W C, Leong E S P, Liu R B, Chin A H, Zou B S, Ning C Z 2009 Nano Lett. 9 784

    [25]

    Sirbuly D J, Law M, Pauzauskie P, Yan H, Maslov A V, Knutsen K, Ning C Z, Saykally R J, Yang P 2005 Proc. Natl. Acad. Sci. USA 102 7800

    [26]

    Pan Z W, Dai Z R, Ma C, Wang Z L 2002 J. Am. Chem. Soc. 124 1817

    [27]

    Pan A L, Yang H, Liu R B, Yu R C, Zou B S, Wang Z L 2005 J. Am. Chem. Soc. 127 15692

    [28]

    Pan A L, Wang X X, He P B, Zhang Q L, Wan Q, Zacharias M, Zhu X, Zou B S 2007 Nano Lett. 7 2970

    [29]

    Xu J Y, Zhuang X J, Guo P F, Huang W Q, Hu W, Zhang Q L, Wan Q, Zhu X L, Yang Z Y, Tong L M, Duan X F, Pan A L 2012 Sci. Rep. 2 820

    [30]

    Xu J Y, Zhuang X J, Guo P F, Zhang Q L, Ma L, Wang X X, Zhu X L, Pan A L 2013 J. Mater. Chem. C 1 4391

    [31]

    Yan H, Choe H S, Nam S W, Hu Y J, Das S, Klemic J F, llenbogen J C, Lieber C M 2011 Nature 470 240

    [32]

    Duan X F, Huang Y, Cui Y, Wang J F, Lieber C M 2001 Nature 409 66

    [33]

    Li J B, Meng C, Liu Y, Wu X Q, Lu Y Z, Ye Y, Dai L, Tong L M, Liu X, Yang Q 2013 Adv. Mater. 25 833

    [34]

    Guo P F, Zhuang X J, Xu J Y, Zhang Q L, Hu W, Zhu X L, Wang X X, Wan Q, He P B, Zhou H, Pan A L 2013 Nano Lett. 13 1251

    [35]

    Zimmler M A, Bao J, Capasso F, Muller S, Ronning C 2008 Appl. Phys. Lett. 93 051101

    [36]

    Zhuang X J, Guo P F, Zhang Q L, Liu H W, Li D, Hu W, Zhu X L, Zhou H, Pan A L 2016 Nano Res. 9 933

    [37]

    Jensen B, Torabi A 1986 J. Opt. Soc. Am. B 3 857

  • [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Slight T J, Romeira B, Wang L, Figueiredo J M L, Wasige E, Ironside C N A 2008 IEEE J. Quantum Elect. 44 1158

    [3]

    Hiyamizu S, Mimura T 1982 J. Cryst. Growth 56 455

    [4]

    Harrison T R, Tait G B, McAdoo J A 2005 Proc. SPIE 5732 342

    [5]

    Nylund G, Storm K, Lehmann S, Capasso F, Samuelson L 2016 Nano Lett. 16 1017

    [6]

    de la Mata M, Magen C, Caroff P, Arbiol J 2014 Nano Lett. 14 6614

    [7]

    Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M 2002 Nature 415 617

    [8]

    Wu Y, Fan R, Yang P 2002 Nano Lett. 2 83

    [9]

    Flynn G, Ramasse Q M, Ryan K M 2016 Nano Lett. 16 374

    [10]

    Bjrk M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Nano Lett. 2 87

    [11]

    Fan C, Zhang Q L, Zhu X L, Zhuang X J, Pan A L 2015 Sci. Bull. 60 1674

    [12]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloys Compd. 649 793

    [13]

    Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29

    [14]

    Lou Z, Li L, Shen G 2016 Nanoscale 8 5219

    [15]

    Ma L, Zhang X H, Li H L, Tan H, Yang Y K, Xu Y D, Hu W, Zhu X L, Zhuang X J, Pan A L 2015 Semicond. Sci. Technol. 30 10

    [16]

    Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F, Zou D S 2016 Acta Phys. Sin. 65 118104 (in Chinese) [李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕 2016 物理学报 65 118104]

    [17]

    Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548

    [18]

    Zheng D S, Fang H H, Wang P, Luo W J, Gong Fan, Ho J C, Chen X S, Lu W, Liao L, Wang J L, Hu W D 2016 Adv. Funct. Mater. 26 7690

    [19]

    Pan A L, Wang S Q, Liu R B, Li C R, Zou B S 2005 Small 1 1058

    [20]

    Wang X, Pan A L, Liu D, Bai Y Q, Zhang Z H, Zou B S, Zhu X 2007 Acta Phys. Sin. 56 6352 (in Chinese) [王笑, 潘安练, 刘丹, 白永强, 张朝晖, 邹炳锁, 朱星 2007 物理学报 56 6352]

    [21]

    Zhang Q L, Zhu X L, Li Y Y, Liang J W, Chen T R, Fan P, Zhou H, Hu W, Zhuang X J, Pan A L 2016 Laser Photon. Rev. 10 458

    [22]

    Zhang Q L, Liu H W, Guo P F, Li D, Fan P, Zheng W H, Zhu X L, Jiang Y, Zhou H, Hu W, Zhuang X J, Liu H J, Duan X F, Pan A L 2017 Nano Energy 32 28

    [23]

    Zhang Q L, Wang S W, Liu X X, Chen T R, Li H F, Liang J W, Zheng W H, Agarwal R, Lu W, Pan A L 2016 Nano Energy 30 481

    [24]

    Pan A L, Zhou W C, Leong E S P, Liu R B, Chin A H, Zou B S, Ning C Z 2009 Nano Lett. 9 784

    [25]

    Sirbuly D J, Law M, Pauzauskie P, Yan H, Maslov A V, Knutsen K, Ning C Z, Saykally R J, Yang P 2005 Proc. Natl. Acad. Sci. USA 102 7800

    [26]

    Pan Z W, Dai Z R, Ma C, Wang Z L 2002 J. Am. Chem. Soc. 124 1817

    [27]

    Pan A L, Yang H, Liu R B, Yu R C, Zou B S, Wang Z L 2005 J. Am. Chem. Soc. 127 15692

    [28]

    Pan A L, Wang X X, He P B, Zhang Q L, Wan Q, Zacharias M, Zhu X, Zou B S 2007 Nano Lett. 7 2970

    [29]

    Xu J Y, Zhuang X J, Guo P F, Huang W Q, Hu W, Zhang Q L, Wan Q, Zhu X L, Yang Z Y, Tong L M, Duan X F, Pan A L 2012 Sci. Rep. 2 820

    [30]

    Xu J Y, Zhuang X J, Guo P F, Zhang Q L, Ma L, Wang X X, Zhu X L, Pan A L 2013 J. Mater. Chem. C 1 4391

    [31]

    Yan H, Choe H S, Nam S W, Hu Y J, Das S, Klemic J F, llenbogen J C, Lieber C M 2011 Nature 470 240

    [32]

    Duan X F, Huang Y, Cui Y, Wang J F, Lieber C M 2001 Nature 409 66

    [33]

    Li J B, Meng C, Liu Y, Wu X Q, Lu Y Z, Ye Y, Dai L, Tong L M, Liu X, Yang Q 2013 Adv. Mater. 25 833

    [34]

    Guo P F, Zhuang X J, Xu J Y, Zhang Q L, Hu W, Zhu X L, Wang X X, Wan Q, He P B, Zhou H, Pan A L 2013 Nano Lett. 13 1251

    [35]

    Zimmler M A, Bao J, Capasso F, Muller S, Ronning C 2008 Appl. Phys. Lett. 93 051101

    [36]

    Zhuang X J, Guo P F, Zhang Q L, Liu H W, Li D, Hu W, Zhu X L, Zhou H, Pan A L 2016 Nano Res. 9 933

    [37]

    Jensen B, Torabi A 1986 J. Opt. Soc. Am. B 3 857

  • [1] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220990
    [2] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [3] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [4] 张茜, 李萌, 龚旗煌, 李焱. 飞秒激光直写光量子逻辑门. 物理学报, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [5] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [6] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性. 物理学报, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [7] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [8] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [9] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [10] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [11] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [12] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [13] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [14] 岳嵩, 李智, 陈建军, 龚旗煌. 基于耦合介质纳米线的深亚波长局域波导. 物理学报, 2011, 60(9): 094214. doi: 10.7498/aps.60.094214
    [15] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [16] 王珏, 涂成厚, 张双根, 吕福云. 基于飞秒激光写制波导的PPKTP晶体倍频实验研究. 物理学报, 2010, 59(1): 307-310. doi: 10.7498/aps.59.307
    [17] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [18] 刘 丹, 马仁敏, 王菲菲, 张增星, 张振生, 张学进, 王 笑, 白永强, 朱 星, 戴 伦, 章 蓓. 纳米集成光路中的光源、光波导和光增强. 物理学报, 2008, 57(1): 371-381. doi: 10.7498/aps.57.371
    [19] 徐宏来, 张 鹏, 赵建林, 高瑀含, 叶知隽, 杨德兴. 会聚激光扫描铌酸锂晶体写入光波导时的最佳曝光间距. 物理学报, 2006, 55(6): 3100-3105. doi: 10.7498/aps.55.3100
    [20] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
计量
  • 文章访问数:  3642
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-06
  • 修回日期:  2016-12-17
  • 刊出日期:  2017-03-05

CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射

    基金项目: 国家自然科学基金(批准号:11374092,61474040,61574054,61505051)资助的课题.

摘要: 本文利用可控的化学气相沉积法合成了高质量的轴向CdS/CdS0.48Se0.52异质结纳米线.扫描电子显微镜表征发现这些纳米线具有光滑的表面结构;荧光显微图像表明纳米线由CdS和CdSSe两部分沿轴向构成;微区荧光光谱研究表明界面区具有高的结晶质量;光波导研究表明异质结纳米线具有非对称光传输特性;进一步的激发功率依赖的荧光光谱研究表明此结构可以实现红和绿双波长激射,并且红色激射阈值低于绿色激射.理论模拟表明波导光可以两相间有效传输.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回