搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电胶体粒子弹性有效电荷测量的理论改进

王林伟 徐升华 周宏伟 孙祉伟 欧阳文泽 徐丰

引用本文:
Citation:

带电胶体粒子弹性有效电荷测量的理论改进

王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰

Theoretical improvement on the determination of effective elasticity charges for charged colloidal particles

Wang Lin-Wei, Xu Sheng-Hua, Zhou Hong-Wei, Sun Zhi-Wei, Ouyang Wen-Ze, Xu Feng
PDF
导出引用
  • 对于带高电荷的胶体粒子形成的胶体晶体,用现有的剪切模量与粒子间相互作用的理论模型去计算剪切模量时,得到的结果要比实验测量值大很多,而根据此理论模型由剪切模量测量值拟合得到的粒子表面有效电荷也比实验测量的表面有效电荷小很多.这个问题一直没有合理的解释.分析认为这是由于理论模型基于理想晶体,并没有考虑到实际晶体中存在孔隙等缺陷会造成材料机械性能的下降.针对该因素,本文对已有的理论模型进行了修正,引入了孔隙造成的影响,同时使用Sogami-Ise相互作用势代替原来常用的Yukawa作用势.研究中用扭转共振法测量了带电粒子胶体晶体的剪切模量,比较了分别根据修正前后的关系模型由所测剪切模量拟合的有效电荷(弹性有效电荷),证实修正后的理论模型更合理,与使用Alexander等的方法得到的归一化电荷相比,一致性有了明显提高.
    According to the existing shear modulus-pair potential relationship model for colloidal crystal comprised of highly charged colloidal particles, the calculated shear moduli of colloidal crystals are much larger than the measured values by the torsional resonance spectroscopy (TRS). Moreover, by using the relationship model, the effective surface charge of colloidal particles, obtained by fitting values of shear moduli measured by TRS (effective elasticity charge), is smaller than that obtained through the experimental method of conductivity-number density relationship (effectively transported charge). So far there has been no practical explanation to this discrepancy. Our analysis shows that this discrepancy is because the existing relationship model is for the perfect crystals and does not include the defects such as voids which can result in the decrease of mechanical properties of materials. The existing shear modulus-pair potential model will be improved by introducing the effect of voids, which is inspired from the Gibson-Ashby model in the study of cellular solid. The Yukawa potential, which considers Coulomb repulsions between colloidal particles and is usually used in the model expressions, will be substituted by Sogami-Ise potential, which considers a long-range attraction in addition to that Coulomb repulsions and accepts the existence of voids inside the colloidal crystals. For five different kinds of highly charged colloidal particles, the shear moduli with different volume fractions are measured by TRS. Then the fitted effective surface charges using the original and improved model respectively are compared with each other. It can be concluded that the effective elastic charge obtained by the improved model is more suitable and much closer to the renormalized charge obtained from Alexander's method. It is also clear that neither the effectively transported charge nor the Alexander's renormalized charge can be used to evaluate the shear moduli of colloidal crystals with voids inside. These results can also let us further understand and use the effective surface charge in the colloid studies.
      通信作者: 王林伟, wanglinwei@outlook.com;xush@imech.ac.cn ; 徐升华, wanglinwei@outlook.com;xush@imech.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11302226,11572322,11672295)资助的课题.
      Corresponding author: Wang Lin-Wei, wanglinwei@outlook.com;xush@imech.ac.cn ; Xu Sheng-Hua, wanglinwei@outlook.com;xush@imech.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11302226, 11572322, 11672295).
    [1]

    Denton A R 2010 J. Phys.-Condens. Matter 22 364108

    [2]

    Zhou H W, Mi L, Liu L X, Xu S H, Sun Z W 2013 Acta Phys. Sin. 62 134704 (in Chinese) [周宏伟, 米利, 刘丽霞, 徐升华, 孙祉伟 2013 物理学报 62 134704]

    [3]

    Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P, Hone D 1984 J. Chem. Phys. 80 5776

    [4]

    Grosse C, Shilov V N 2000 J. Colloid Interf. Sci. 225 340

    [5]

    Palberg T, Schweinfurth H, Kller T, Mller H, Schpe H J, Reinmller A 2013 Eur. Phys. J.-Spec. Top. 222 2835

    [6]

    Ito K, Sumaru K, Ise N 1992 Phys. Rev. B 46 3105

    [7]

    Ouyang W, Zhou H, Xu S, Sun Z 2014 Colloid. Surface A 441 598

    [8]

    Zhou H, Xu S, Ouyang W, Sun Z, Liu L 2013 J. Chem. Phys. 139 064904

    [9]

    Gong Y K, Nakashima K, Xu R 2001 Langmuir 17 2889

    [10]

    Belloni L 1998 Colloid. Surface A 140 227

    [11]

    Wette P, Schpe H J, Palberg T 2002 J. Chem. Phys. 116 10981

    [12]

    Shapran L, Medebach M, Wette P, Palberg T, Schpe H J, Horbach J, Kreer T, Chatterji A 2005 Colloid. Surface A 270-271 220

    [13]

    Wette P, Schpe H J, Palberg T 2003 Colloid. Surface A 222 311

    [14]

    Dubois-Violette E, Pieranski P, Rothen F, Strzelecki L 1980 J. Phys. France 41 369

    [15]

    Joanny J F 1979 J. Colloid Interf. Sci. 71 622

    [16]

    Yoshida H, Ito K, Ise N 1991 Phys. Rev. B 44 435

    [17]

    Zhou H, Xu S, Sun Z, Du X, Liu L 2011 Langmuir 27 7439

    [18]

    Zhou H, Xu S, Sun Z, Zhu R 2015 J. Chem. Phys. 143 144903

    [19]

    Hashin Z, Shtrikman 1962 J. Mech. Phys. Solids 10 343

    [20]

    Zeller R, Dederichs P 1973 Phys. Status Solidi B 55 831

    [21]

    Anderson V J, Terentjev E M, Meeker S P 2001 Eur. Phys. J. E 4 11

    [22]

    Anderson V J, Terentjev E M 2001 Eur. Phys. J. E 4 21

    [23]

    Ashby M F, Medalist R F M 1983 Metall. Trans. A 14 1755

    [24]

    Nieh T, Kinney J, Wadsworth J, Ladd A 1998 Scripta Mater. 38 1487

    [25]

    Ise N, Konishi T, Tata B V R 1999 Langmuir 15 4176

    [26]

    Stevens M J, Falk M L, Robbins M O 1996 J. Chem. Phys. 104 5209

    [27]

    Tata B V R, Ise N 1996 Phys. Rev. B 54 6050

    [28]

    Sogami I, Ise N 1984 J. Chem. Phys. 81 6320

    [29]

    Wang Q, Fu S, Yu T 1994 Prog. Polym. Sci. 19 703

    [30]

    Du X, Xu S H, Sun Z W, Liu L 2012 Chin. J. Chem. Phys. 25 318

    [31]

    Shouldice G T D, Vandezande G A, Rudin A 1994 Eur. Polym. J. 30 179

    [32]

    Goldburg W I 1999 Am. J. Phys. 67 1152

    [33]

    Xiong B, Pallandre A, le Potier I, Audebert P, Fattal E, Tsapis N, Barratt G, Taverna M 2012 Anal. Methods 4 183

    [34]

    Qin Y M, Zhou H W, Xu S H, Sun Z W 2015 Chem. J. Chinese Univ. 36 310 (in Chinese) [秦艳铭, 周宏伟, 徐升华, 孙祉伟 2015 高等学校化学学报 36 310]

    [35]

    Trizac E, Bocquet L, Aubouy M, von Grnberg H H 2003 Langmuir 19 4027

    [36]

    Hessinger D, Evers M, Palberg T 2000 Phys. Rev. E 61 5493

    [37]

    Joanicot M, Jorand M, Pieranski P, Rothen F 1984 J. Phys. France 45 1413

  • [1]

    Denton A R 2010 J. Phys.-Condens. Matter 22 364108

    [2]

    Zhou H W, Mi L, Liu L X, Xu S H, Sun Z W 2013 Acta Phys. Sin. 62 134704 (in Chinese) [周宏伟, 米利, 刘丽霞, 徐升华, 孙祉伟 2013 物理学报 62 134704]

    [3]

    Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P, Hone D 1984 J. Chem. Phys. 80 5776

    [4]

    Grosse C, Shilov V N 2000 J. Colloid Interf. Sci. 225 340

    [5]

    Palberg T, Schweinfurth H, Kller T, Mller H, Schpe H J, Reinmller A 2013 Eur. Phys. J.-Spec. Top. 222 2835

    [6]

    Ito K, Sumaru K, Ise N 1992 Phys. Rev. B 46 3105

    [7]

    Ouyang W, Zhou H, Xu S, Sun Z 2014 Colloid. Surface A 441 598

    [8]

    Zhou H, Xu S, Ouyang W, Sun Z, Liu L 2013 J. Chem. Phys. 139 064904

    [9]

    Gong Y K, Nakashima K, Xu R 2001 Langmuir 17 2889

    [10]

    Belloni L 1998 Colloid. Surface A 140 227

    [11]

    Wette P, Schpe H J, Palberg T 2002 J. Chem. Phys. 116 10981

    [12]

    Shapran L, Medebach M, Wette P, Palberg T, Schpe H J, Horbach J, Kreer T, Chatterji A 2005 Colloid. Surface A 270-271 220

    [13]

    Wette P, Schpe H J, Palberg T 2003 Colloid. Surface A 222 311

    [14]

    Dubois-Violette E, Pieranski P, Rothen F, Strzelecki L 1980 J. Phys. France 41 369

    [15]

    Joanny J F 1979 J. Colloid Interf. Sci. 71 622

    [16]

    Yoshida H, Ito K, Ise N 1991 Phys. Rev. B 44 435

    [17]

    Zhou H, Xu S, Sun Z, Du X, Liu L 2011 Langmuir 27 7439

    [18]

    Zhou H, Xu S, Sun Z, Zhu R 2015 J. Chem. Phys. 143 144903

    [19]

    Hashin Z, Shtrikman 1962 J. Mech. Phys. Solids 10 343

    [20]

    Zeller R, Dederichs P 1973 Phys. Status Solidi B 55 831

    [21]

    Anderson V J, Terentjev E M, Meeker S P 2001 Eur. Phys. J. E 4 11

    [22]

    Anderson V J, Terentjev E M 2001 Eur. Phys. J. E 4 21

    [23]

    Ashby M F, Medalist R F M 1983 Metall. Trans. A 14 1755

    [24]

    Nieh T, Kinney J, Wadsworth J, Ladd A 1998 Scripta Mater. 38 1487

    [25]

    Ise N, Konishi T, Tata B V R 1999 Langmuir 15 4176

    [26]

    Stevens M J, Falk M L, Robbins M O 1996 J. Chem. Phys. 104 5209

    [27]

    Tata B V R, Ise N 1996 Phys. Rev. B 54 6050

    [28]

    Sogami I, Ise N 1984 J. Chem. Phys. 81 6320

    [29]

    Wang Q, Fu S, Yu T 1994 Prog. Polym. Sci. 19 703

    [30]

    Du X, Xu S H, Sun Z W, Liu L 2012 Chin. J. Chem. Phys. 25 318

    [31]

    Shouldice G T D, Vandezande G A, Rudin A 1994 Eur. Polym. J. 30 179

    [32]

    Goldburg W I 1999 Am. J. Phys. 67 1152

    [33]

    Xiong B, Pallandre A, le Potier I, Audebert P, Fattal E, Tsapis N, Barratt G, Taverna M 2012 Anal. Methods 4 183

    [34]

    Qin Y M, Zhou H W, Xu S H, Sun Z W 2015 Chem. J. Chinese Univ. 36 310 (in Chinese) [秦艳铭, 周宏伟, 徐升华, 孙祉伟 2015 高等学校化学学报 36 310]

    [35]

    Trizac E, Bocquet L, Aubouy M, von Grnberg H H 2003 Langmuir 19 4027

    [36]

    Hessinger D, Evers M, Palberg T 2000 Phys. Rev. E 61 5493

    [37]

    Joanicot M, Jorand M, Pieranski P, Rothen F 1984 J. Phys. France 45 1413

  • [1] 赵小安, 徐升华, 周宏伟, 孙祉伟. 电解质浓度对胶体粒子表面有效电荷的影响. 物理学报, 2021, 70(5): 056402. doi: 10.7498/aps.70.20201472
    [2] 程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超. 基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化. 物理学报, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [3] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [4] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [5] 李龙, 王鸣, 倪海彬, 沈添怿. 采用溶胶凝胶协同自组装与光刻相结合的方法在反蛋白石结构薄膜中引入二维缺陷. 物理学报, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [6] 李小龙, 陆颖, 翟永亮, 吴兰生, 孙威, 胡书新. 平板电极间胶体晶体在电场作用下的各向同性压缩. 物理学报, 2013, 62(17): 176105. doi: 10.7498/aps.62.176105
    [7] 倪海彬, 王鸣, 陈威. 采用溶胶凝胶协同自组装方法制备SiO2反蛋白石结构薄膜及其光学性质研究. 物理学报, 2012, 61(8): 084211. doi: 10.7498/aps.61.084211
    [8] 顾凌云, 徐升华, 孙祉伟. 带电粒子形成胶体晶体的有效硬球模型判据的计算机模拟验证. 物理学报, 2011, 60(12): 126402. doi: 10.7498/aps.60.126402
    [9] 孙其诚, 张国华, 王博, 王光谦. 半柔性网络剪切模量的计算. 物理学报, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [10] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型:以Al为例. 物理学报, 2009, 58(9): 6413-6418. doi: 10.7498/aps.58.6413
    [11] 刘 蕾, 徐升华, 孙祉伟, 段 俐, 解京昌, 林 海. 二元体系胶体晶体性质的实验研究. 物理学报, 2008, 57(11): 7367-7373. doi: 10.7498/aps.57.7367
    [12] 杜启振, 刘莲莲, 孙晶波. 各向异性粘弹性孔隙介质地震波场伪谱法正演模拟. 物理学报, 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [13] 冯增朝, 赵阳升, 吕兆兴. 二维孔隙裂隙双重介质逾渗规律研究. 物理学报, 2007, 56(5): 2796-2801. doi: 10.7498/aps.56.2796
    [14] 冉宪文, 汤文辉, 谭 华, 戴诚达. 考虑材料熔化潜热的高温高压本构. 物理学报, 2006, 55(6): 2852-2855. doi: 10.7498/aps.55.2852
    [15] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究. 物理学报, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [16] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [17] 华劲松, 经福谦, 谭 华, 周显明. 一种计算剪切模量温度系数的方法. 物理学报, 2005, 54(1): 246-250. doi: 10.7498/aps.54.246
    [18] 彭建祥, 经福谦, 王礼立, 李大红. 冲击压缩下铝、铜、钨的剪切模量和屈服强度与压力和温度的相关性. 物理学报, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
    [19] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量. 物理学报, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
    [20] 华劲松, 经福谦, 谭 华. 一种获得剪切模量压强二阶偏导数G″P的方法. 物理学报, 2000, 49(12): 2443-2447. doi: 10.7498/aps.49.2443
计量
  • 文章访问数:  2575
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-22
  • 修回日期:  2016-12-17
  • 刊出日期:  2017-03-05

带电胶体粒子弹性有效电荷测量的理论改进

    基金项目: 国家自然科学基金(批准号:11302226,11572322,11672295)资助的课题.

摘要: 对于带高电荷的胶体粒子形成的胶体晶体,用现有的剪切模量与粒子间相互作用的理论模型去计算剪切模量时,得到的结果要比实验测量值大很多,而根据此理论模型由剪切模量测量值拟合得到的粒子表面有效电荷也比实验测量的表面有效电荷小很多.这个问题一直没有合理的解释.分析认为这是由于理论模型基于理想晶体,并没有考虑到实际晶体中存在孔隙等缺陷会造成材料机械性能的下降.针对该因素,本文对已有的理论模型进行了修正,引入了孔隙造成的影响,同时使用Sogami-Ise相互作用势代替原来常用的Yukawa作用势.研究中用扭转共振法测量了带电粒子胶体晶体的剪切模量,比较了分别根据修正前后的关系模型由所测剪切模量拟合的有效电荷(弹性有效电荷),证实修正后的理论模型更合理,与使用Alexander等的方法得到的归一化电荷相比,一致性有了明显提高.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回