搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究

吴孔平 孙昌旭 马文飞 王杰 魏巍 蔡俊 陈昌兆 任斌 桑立雯 廖梅勇

引用本文:
Citation:

铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究

吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇

Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation

Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong
PDF
导出引用
  • 宽带隙半导体金刚石具有突出的电学与热学特性,近年来,基于金刚石的高频大功率器件受到广泛关注,对于金属-金刚石肖特基结而言,具有较高的击穿电压和较小的串联电阻,所以金属-金刚石这种金半结具有非常好的发展前景. 本文通过第一性原理方法去研究金属铝-金刚石界面电子特性与肖特基势垒的高度. 界面附近原子轨道的投影态密度的计算表明:金属诱导带隙态会在金刚石一侧产生,并且具有典型的局域化特征,同时可以发现电子电荷转移使得Fermi能级在金刚石一侧有所提升. 电子电荷在界面的重新分布促使界面形成新的化学键,使得金属铝-氢化金刚石形成稳定的金半结. 特别地,我们通过计算平均静电势的方法得到金属铝-氢化金刚石界面的势垒高度为1.03 eV,该值与金属诱导带隙态唯像模型计算的结果非常接近,也与实验值符合得很好. 本文的研究可为金属-金刚石肖特基结二极管的研究奠定理论基础,也可为金刚石基金半结大功率器件的研究提供理论参考.
    Diamond is regarded as one of the most promising semiconductor materials used for high power devices because of its superior physical and electrical properties, such as wide bandgap, high breakdown electric field, high mobility, and high thermal conductivity. Highpower diamond devices are now receiving much attention. In particular, Schottky diode based on a metal/diamond junction has promising applications, and high breakdown voltage has been achieved, though unfortunately its forward resistance is high. In this paper, the first principles calculations are performed to study the electronic structure of interface and the Schottky barrier height of Al-diamond interface. The projection of the density of states on the atomic orbitals of the interface atoms reveals that the typical Al-induced gap states are associated with a smooth density of states in the bulk diamond band gap region, and these gap states are found to be localized within three atom layers. At the same time, electronic charge transfer makes the Fermi level upgrade on the side of diamond. Besides, the typical Al-induced gap state model gives a simple picture about what determines Schottky barrier height at Al-diamond interface, by assuming an ideal, defect-free and laterally homogeneous Schottky interface in which the only interaction comes from the decay of the electron wave function from the metal into the semiconductor, which in turn induces electronic charges to be rearranged in the region close to the interface. As for the electronic charge transfer, this potential shift can be extracted by subtracting the superimposed planar or macroscopically averaged electrostatic potentials of the Al and diamond surfaces (at frozen atomic positions), from the planar or macroscopically averaged potential of the relaxed Al-diamond interface. The electronic charge transfer suggests that the formation of an interface should be associated with the formation of new chemical bonds and substantial rearrangements of the electron charge density. Especially, we obtain the Schottky barrier height of 1.03 by the first principle, which is in good agreement with the results from phenomenological model and experiment. The research results in this paper can provide a theoretical basis for the research of the metal diamond Schottky junction diode, and can also give a theoretical reference for the research of the metal-semiconductor highpower device based on diamond material.
      通信作者: 吴孔平, Wu.Kongping@nims.go.jp;Meiyong.Liao@nims.go.jp ; 廖梅勇, Wu.Kongping@nims.go.jp;Meiyong.Liao@nims.go.jp
    • 基金项目: 安徽省高校优秀拔尖人才培育资助项目(批准号:gxfxZD2016077)、中国博士后科学基金(批准号:2016M601993)和中国国家留学基金委项目(批准号:201508340047)资助的课题.
      Corresponding author: Wu Kong-Ping, Wu.Kongping@nims.go.jp;Meiyong.Liao@nims.go.jp ; Liao Mei-Yong, Wu.Kongping@nims.go.jp;Meiyong.Liao@nims.go.jp
    • Funds: Project supported by the University Outstanding Talent Cultivation Program of Anhui Province, China (Grant No. gxfxZD2016077), the China Postdoctoral Science Foundation (Grant No. 2016M601993), and China Scholarship Council (Grant No. 201508340047).
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Crawford K G, Cao L, Qi D C, Tallaire A, Limiti E, Verona C, Wee A T S, Moran D A J 2016 Appl. Phys. Lett. 108 042103

    [3]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Device Lett. 33 1471

    [4]

    Volpe P N, Muret P, Pernot J, Omnes F, Teraji T, Koide Y, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B, Scharnholz S 2010 Appl. Phys. Lett. 97 223501

    [5]

    Huang W, Chow T P, Yang J, Butler J E 2004 Int. J. High Speed Electron. Syst. 14 872

    [6]

    Umezawa H, Kato Y, Shikata S 2013 Appl. Phys. Express 6 011302

    [7]

    Kumaresan H R, Umezawa H, Shikata S 2010 Diamond Relat. Mat. 19 1324

    [8]

    Ohmagari S, Teraji T, Koide Y 2011 J. Appl. Phys. 110 056105

    [9]

    Pereira L, Rodrigues A, Gomes H, Pereira E 2001 Diamond Relat. Mater. 10 615

    [10]

    Kawashima H, Noguchi H, Matsumoto T, Kato H, Ogura M, Makino T, Shirai S, Takeuchi D, Yamasaki S 2015 Appl. Phys. Express 8 104103

    [11]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101

    [12]

    Ueda K, Kawamoto K, Asano H 2014 Jpn. J. Appl. Phys. 53 853

    [13]

    Teraji T, Koide Y, Ito T 2009 Phys. Status Solidi (RRL) 3 211

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [16]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [17]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [18]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106

    [19]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 124 154709

    [20]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 125 249901

    [21]

    Silvestri L, Ladouceur F 2016 J. Phys. Chem. Lett. 7 1534

    [22]

    Methfessel M, Hennig D, Scheffler M 1992 Phys. Rev. B 46 4816

    [23]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [24]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [25]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [26]

    Wu K P, Qi J, Peng B, Tang K, Ye J D, Zhu S M, Gu S L 2015 Acta Phys. Sin. 64 187304 (in Chinese) [吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林 2015 物理学报 64 187304]

    [27]

    Singh-Miller N E, Marzari N 2009 Phys. Rev. B 80 235407

    [28]

    Gebreselasie D, Benesh G A 1997 J. Phys. Condens. Matter 9 8359

    [29]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [30]

    Hong S, Chou M Y 1997 Phys. Rev. B 55 9975

    [31]

    Steckel J A, Kresse G, Hafner J 2002 Phys. Rev. B 66 155406

    [32]

    Yu Y, Gu C Z, Xu L F, Zhang S B 2004 Phys. Rev. B 70 125423

    [33]

    van der Weide J, Zhang Z, Baumann P K, Wensell M G, Bernholc J, Nemanich R J 1994 Phys. Rev. B 50 5803

    [34]

    Mnch W 2004 Electronic Properties of Semiconductor Interfaces (Springer Series in Surface Sciences) (Berlin: Springer) pp147-160

    [35]

    Mnch W 1987 Phys. Rev. Lett. 58 1260

    [36]

    Kawarada H 1996 Surf. Sci. Rep. 26 205

    [37]

    Mnch W 1994 Europhys. Lett. 27 479

    [38]

    von Windheim J A, Venkatesan V, Malta D M, Das K 1993 J. Electron. Mater. 22 391

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Crawford K G, Cao L, Qi D C, Tallaire A, Limiti E, Verona C, Wee A T S, Moran D A J 2016 Appl. Phys. Lett. 108 042103

    [3]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Device Lett. 33 1471

    [4]

    Volpe P N, Muret P, Pernot J, Omnes F, Teraji T, Koide Y, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B, Scharnholz S 2010 Appl. Phys. Lett. 97 223501

    [5]

    Huang W, Chow T P, Yang J, Butler J E 2004 Int. J. High Speed Electron. Syst. 14 872

    [6]

    Umezawa H, Kato Y, Shikata S 2013 Appl. Phys. Express 6 011302

    [7]

    Kumaresan H R, Umezawa H, Shikata S 2010 Diamond Relat. Mat. 19 1324

    [8]

    Ohmagari S, Teraji T, Koide Y 2011 J. Appl. Phys. 110 056105

    [9]

    Pereira L, Rodrigues A, Gomes H, Pereira E 2001 Diamond Relat. Mater. 10 615

    [10]

    Kawashima H, Noguchi H, Matsumoto T, Kato H, Ogura M, Makino T, Shirai S, Takeuchi D, Yamasaki S 2015 Appl. Phys. Express 8 104103

    [11]

    Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H, Yamasaki S 2009 Appl. Phys. Lett. 94 262101

    [12]

    Ueda K, Kawamoto K, Asano H 2014 Jpn. J. Appl. Phys. 53 853

    [13]

    Teraji T, Koide Y, Ito T 2009 Phys. Status Solidi (RRL) 3 211

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [16]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [17]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [18]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106

    [19]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 124 154709

    [20]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, ngyn J G 2006 J. Chem. Phys. 125 249901

    [21]

    Silvestri L, Ladouceur F 2016 J. Phys. Chem. Lett. 7 1534

    [22]

    Methfessel M, Hennig D, Scheffler M 1992 Phys. Rev. B 46 4816

    [23]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [24]

    Leung T C, Kao C L, Su W S, Feng Y J, Chan C T 2003 Phys. Rev. B 68 195408

    [25]

    Fall C J, Binggeli N, Baldereschi A 1999 J. Phys. Condens. Matter 11 2689

    [26]

    Wu K P, Qi J, Peng B, Tang K, Ye J D, Zhu S M, Gu S L 2015 Acta Phys. Sin. 64 187304 (in Chinese) [吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林 2015 物理学报 64 187304]

    [27]

    Singh-Miller N E, Marzari N 2009 Phys. Rev. B 80 235407

    [28]

    Gebreselasie D, Benesh G A 1997 J. Phys. Condens. Matter 9 8359

    [29]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [30]

    Hong S, Chou M Y 1997 Phys. Rev. B 55 9975

    [31]

    Steckel J A, Kresse G, Hafner J 2002 Phys. Rev. B 66 155406

    [32]

    Yu Y, Gu C Z, Xu L F, Zhang S B 2004 Phys. Rev. B 70 125423

    [33]

    van der Weide J, Zhang Z, Baumann P K, Wensell M G, Bernholc J, Nemanich R J 1994 Phys. Rev. B 50 5803

    [34]

    Mnch W 2004 Electronic Properties of Semiconductor Interfaces (Springer Series in Surface Sciences) (Berlin: Springer) pp147-160

    [35]

    Mnch W 1987 Phys. Rev. Lett. 58 1260

    [36]

    Kawarada H 1996 Surf. Sci. Rep. 26 205

    [37]

    Mnch W 1994 Europhys. Lett. 27 479

    [38]

    von Windheim J A, Venkatesan V, Malta D M, Das K 1993 J. Electron. Mater. 22 391

  • [1] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [2] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 丁华俊, 薛忠营, 魏星, 张波. 1 nm Al 插入层调节 NiGe/n-Ge 肖特基势垒. 物理学报, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [5] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [6] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应. 物理学报, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [7] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [8] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [9] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [10] 简小刚, 张允华. 温度对金刚石涂层膜基界面力学性能的影响. 物理学报, 2015, 64(4): 046701. doi: 10.7498/aps.64.046701
    [11] 吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林. 第一性原理的广义梯度近似+U方法的纤锌矿Zn1-xMgxO极化特性与Zn0.75Mg0.25O/ZnO 界面能带偏差研究. 物理学报, 2015, 64(18): 187304. doi: 10.7498/aps.64.187304
    [12] 石大为, 吴美玲, 杨昌平, 任春林, 肖海波, 王开鹰. Pr0.7Ca0.3MnO3陶瓷晶界势垒的交流特性. 物理学报, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [13] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 肖特基势垒对CdS/CdTe薄膜电池J-V暗性能的影响. 物理学报, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [14] 吴美玲, 石大为, 阚芝兰, 王瑞龙, 丁益民, 肖海波, 杨昌平. La0.5Ca0.5MnO3内禀与界面电脉冲诱导电阻转变效应的比较. 物理学报, 2013, 62(20): 207302. doi: 10.7498/aps.62.207302
    [15] 修明霞, 任俊峰, 王玉梅, 原晓波, 胡贵超. 肖特基势垒对铁磁/有机半导体结构自旋注入性质的影响. 物理学报, 2010, 59(12): 8856-8861. doi: 10.7498/aps.59.8856
    [16] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [17] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究. 物理学报, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
    [18] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
    [19] 康 健, 肖长永, 熊艳云, 冯克安, 林彰达. Si衬底上异质外延金刚石的初始阶段原子H的作用及其界面结构. 物理学报, 1999, 48(11): 2104-2109. doi: 10.7498/aps.48.2104
    [20] 白春礼, 郭仪. 弹道电子发射显微镜对Au/n-Si(100)界面势垒的探测. 物理学报, 1995, 44(1): 133-136. doi: 10.7498/aps.44.133
计量
  • 文章访问数:  5029
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-01-25
  • 刊出日期:  2017-04-05

/

返回文章
返回