搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光参量放大相位共轭特性的图像修复与增强

王聪 杨晶 潘秀娟 蔡高航 赵巍 张景园 崔大复 彭钦军 许祖彦

引用本文:
Citation:

基于光参量放大相位共轭特性的图像修复与增强

王聪, 杨晶, 潘秀娟, 蔡高航, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦

Image restoration and enhancement based on phase conjugation of optical parametric amplification

Wang Cong, Yang Jing, Pan Xiu-Juan, Cai Gao-Hang, Zhao Wei, Zhang Jing-Yuan, Cui Da-Fu, Peng Qin-Jun, Xu Zu-Yan
PDF
导出引用
  • 非线性光学相位共轭技术可将经过散射介质后产生畸变的光学波前进行修复.本文基于光参量放大(OPA)过程的光学相位共轭(OPC)特性,进行了光学相位共轭图像修复和增强的实验研究.基于大能量532 nm皮秒抽运激光和大口径非线性光学晶体KTiOPO4(KTP) (II类相位匹配),对经过牛奶乳浊液后已无法识别的1064 nm近红外光学图像,进行相位共轭修复,修复后的图像分辨率达12 线/mm,此外,结合OPA过程的光学增益特性,实现了超过17 dB的光学图像增强,为现有三波混频光学相位共轭修复畸变所获图像增益的最大值.在此基础上,峰值信噪比较修复之前有160\%的提升.考虑到光参量过程所具有的波长可调谐特性,在实际应用中,可根据需要,选择与生物组织的光学治疗窗口相匹配的成像波长,从而保证更长的穿透深度,提升生物组织成像和医学无损检测的效果.
    It is well known that the weak optical image can be amplified based on the optical parametric amplification (OPA), and the distorted wave-front can be recovered by the optical phase conjugation (OPC) method. In this paper, weak infrared images, which are barely recognizable after the propagation through the milk emulsion, are restored and optically amplified based on phase conjugation of OPA.The OPC property of OPA is demonstrated with a type-II phase matched nonlinear optical crystal KTiOPO4 (KTP). The near-infrared image at 1064 nm is the input of OPA as the signal beam, and a 10 Hz, mJ-level, 21 ps 532 nm laser is used as the pump beam. When the spatial and temporal overlap are achieved, the attenuated optical image is amplified. Due to the difference in polarization, the idler beam of the OPA is selected and detected with the CCD and the blurred image is restored by the re-entry of the turbid media.The resolution of restored image is 12 lines/mm, which has achieved a theoretical limit. Moreover, by combining the optical gain of the OPA process, over 17 dB image amplification is obtained, which is the highest for the OPC-based image restoration in turbid media to our knowledge. The significant improvement in image quality is also demonstrated by 160% increase of the peak signal-to-noise ratio. By taking advantage of tunability of the OPA, the operational wavelength of this technique can be extended to an optical therapeutic window, which is suitable for noninvasive image restoration, enhancement and detection.
      通信作者: 杨晶, yangjing@mail.ipc.ac.cn
    • 基金项目: 中国科学院科技创新基金(批准号:CXJJ-16M112,CXJJ-15S089)和北京市自然科学基金(批准号:8154055)资助的课题.
      Corresponding author: Yang Jing, yangjing@mail.ipc.ac.cn
    • Funds: Project supported by the Science Foundation of the Chinese Academy of Science (Grant Nos. CXJJ-16M112, CXJJ-15S089) and the Natural Science Foundation of Beijing, China (Grant No. 8154055).
    [1]

    Zel'dovich Y B, Popovichev V I, Ragul'skii V V, Faizullov F S 1972 JETP Lett. 15 109

    [2]

    Yariv A 1976 J. Opt. Soc. Am. 66 301

    [3]

    Avizonis P V, Hopf F A, Bomberger W D, Jacobs S F, Tomita A, Womack K H 1977 Appl. Phys. Lett. 31 435

    [4]

    Sokolov V I, Nugumanov A M, Smirnov R V 2001 Opt. Commun. 189 377

    [5]

    He G S 2002 Prog. Quant. Electron. 26 131

    [6]

    Hellwarth R W 1977 J. Opt. Soc. Am. 67 1

    [7]

    Zou X Q, Hong P D, Ding Y J 2014 Appl. Phys. Lett. 105 241105

    [8]

    Devaux F, Guiot E, Lantz E 1998 Opt. Lett. 23 1597

    [9]

    Zou X Q, Zhao P, Hong P D, Lin X M, Ding Y J, Mu X D, Lee H C, Meissner S K, Meissner H 2013 Opt. Lett. 38 3054

    [10]

    Hong P D, Zou X Q, Li D, Ding Y J, Liu Z J 2015 Appl. Opt. 54 6172

    [11]

    Zhang T F, Yang J, Hou Y X, Wang W W, Zhao W, Zhang J Y, Cui D F, Peng Q J, Xu Z Y 2015 Acta Phys. Sin. 65 014209 (in Chinese) [张腾飞, 杨晶, 侯岩雪, 王伟伟, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦 2015 物理学报 65 014209]

    [12]

    Devaux F, Le Tolguenec G, Lantz E 1998 Opt. Commun. 147 309

    [13]

    Ye P X 2007 Nonlinear Optical Physics (1st Ed.) (Beijing: Peking University Press) pp99-102 (in Chinese) [叶佩弦 2007 非线性光学物理(第1版) (北京: 北京大学出版社) 第99—102页]

    [14]

    Devaux F, Lantz E 2000 Eur. Phys. J. D 8 117

    [15]

    Liu J, Bai J H, Ni K, Jing H M, He X D, Liu D H 2008 Acta Phys. Sin. 57 260 (in Chinese) [刘娟, 白建辉, 倪凯, 景红梅, 何兴道, 刘大禾 2008 物理学报 57 260]

    [16]

    Zhao L, Liao X F, Xiang T, Xiao D 2010 Acta Phys. Sin. 59 1507 (in Chinese) [赵亮, 廖晓峰, 向涛, 肖迪 2010 物理学报 59 1507]

    [17]

    Devaux F, Lantz E 1995 J. Opt. Soc. Am. B 12 2245

    [18]

    Doule C, Lepine P, Georges P, Brun A 2000 Opt. Lett. 25 353

    [19]

    Guillerm M, Devaux F, Froehly L, Furfaro L, Lantz E 2013 J. Opt. 15 981

  • [1]

    Zel'dovich Y B, Popovichev V I, Ragul'skii V V, Faizullov F S 1972 JETP Lett. 15 109

    [2]

    Yariv A 1976 J. Opt. Soc. Am. 66 301

    [3]

    Avizonis P V, Hopf F A, Bomberger W D, Jacobs S F, Tomita A, Womack K H 1977 Appl. Phys. Lett. 31 435

    [4]

    Sokolov V I, Nugumanov A M, Smirnov R V 2001 Opt. Commun. 189 377

    [5]

    He G S 2002 Prog. Quant. Electron. 26 131

    [6]

    Hellwarth R W 1977 J. Opt. Soc. Am. 67 1

    [7]

    Zou X Q, Hong P D, Ding Y J 2014 Appl. Phys. Lett. 105 241105

    [8]

    Devaux F, Guiot E, Lantz E 1998 Opt. Lett. 23 1597

    [9]

    Zou X Q, Zhao P, Hong P D, Lin X M, Ding Y J, Mu X D, Lee H C, Meissner S K, Meissner H 2013 Opt. Lett. 38 3054

    [10]

    Hong P D, Zou X Q, Li D, Ding Y J, Liu Z J 2015 Appl. Opt. 54 6172

    [11]

    Zhang T F, Yang J, Hou Y X, Wang W W, Zhao W, Zhang J Y, Cui D F, Peng Q J, Xu Z Y 2015 Acta Phys. Sin. 65 014209 (in Chinese) [张腾飞, 杨晶, 侯岩雪, 王伟伟, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦 2015 物理学报 65 014209]

    [12]

    Devaux F, Le Tolguenec G, Lantz E 1998 Opt. Commun. 147 309

    [13]

    Ye P X 2007 Nonlinear Optical Physics (1st Ed.) (Beijing: Peking University Press) pp99-102 (in Chinese) [叶佩弦 2007 非线性光学物理(第1版) (北京: 北京大学出版社) 第99—102页]

    [14]

    Devaux F, Lantz E 2000 Eur. Phys. J. D 8 117

    [15]

    Liu J, Bai J H, Ni K, Jing H M, He X D, Liu D H 2008 Acta Phys. Sin. 57 260 (in Chinese) [刘娟, 白建辉, 倪凯, 景红梅, 何兴道, 刘大禾 2008 物理学报 57 260]

    [16]

    Zhao L, Liao X F, Xiang T, Xiao D 2010 Acta Phys. Sin. 59 1507 (in Chinese) [赵亮, 廖晓峰, 向涛, 肖迪 2010 物理学报 59 1507]

    [17]

    Devaux F, Lantz E 1995 J. Opt. Soc. Am. B 12 2245

    [18]

    Doule C, Lepine P, Georges P, Brun A 2000 Opt. Lett. 25 353

    [19]

    Guillerm M, Devaux F, Froehly L, Furfaro L, Lantz E 2013 J. Opt. 15 981

  • [1] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [2] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [3] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法. 物理学报, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [4] 刘琦, 王丽丹, 段书凯. 一种基于忆阻交叉阵列的自适应三高斯模型及其在图像增强中的应用. 物理学报, 2017, 66(12): 127301. doi: 10.7498/aps.66.127301
    [5] 张腾飞, 杨晶, 侯岩雪, 王伟伟, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦. 基于光参量变频与放大的高灵敏红外成像技术. 物理学报, 2016, 65(1): 014209. doi: 10.7498/aps.65.014209
    [6] 殷杰, 陶超, 刘晓峻. 多参量光声成像及其在生物医学领域的应用. 物理学报, 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [7] 毕国玲, 续志军, 赵建, 孙强. 基于照射_反射模型和有界运算的多谱段图像增强. 物理学报, 2015, 64(10): 100701. doi: 10.7498/aps.64.100701
    [8] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [9] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿. 物理学报, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [10] 刘建辉, 柳强, 巩马理. 光参量过程中的逆转换问题. 物理学报, 2011, 60(2): 024215. doi: 10.7498/aps.60.024215
    [11] 宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新. 载波-包络相位稳定的周期量级近红外超短脉冲激光系统. 物理学报, 2011, 60(5): 054206. doi: 10.7498/aps.60.054206
    [12] 刘涛, 顾畹仪, 史培明, 喻松, 张华. 基于准相位匹配晶体的宽带可调谐光参量放大过程研究. 物理学报, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [13] 宋啸中, 刘红军, 王屹山, 赵 卫. 基于预啁啾控制的极宽带光参量放大. 物理学报, 2008, 57(1): 271-277. doi: 10.7498/aps.57.271
    [14] 朱成禹, 吕志伟, 何伟明, 巴德欣, 王雨雷, 高 玮, 董永康. 布里渊增强四波混频时域特性的理论研究. 物理学报, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [15] 马 晶, 章若冰, 张伟力, 王清月. BBOⅠ类相位匹配光参量放大中群速失配的补偿. 物理学报, 2005, 54(6): 2745-2750. doi: 10.7498/aps.54.2745
    [16] 刘竹欣, 方卯发. 压缩相干态通过参量图像放大系统的光学像. 物理学报, 2005, 54(8): 3627-3631. doi: 10.7498/aps.54.3627
    [17] 张 航. 基于δ声波场的生物组织光学断层成像研究. 物理学报, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [18] 徐光, 钱列加, 王韬, 朱鹤元, 范滇元. 用于超短脉冲扩展的时间望远镜. 物理学报, 2004, 53(1): 93-98. doi: 10.7498/aps.53.93
    [19] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究. 物理学报, 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [20] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计. 物理学报, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
计量
  • 文章访问数:  2955
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-05
  • 修回日期:  2017-03-03
  • 刊出日期:  2017-05-05

基于光参量放大相位共轭特性的图像修复与增强

  • 1. 中国科学院理化技术研究所, 中国科学院固体激光重点实验室, 中国科学院功能晶体与激光技术重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100190;
  • 3. 南佐治亚大学物理系, 美国佐治亚州 30460
  • 通信作者: 杨晶, yangjing@mail.ipc.ac.cn
    基金项目: 中国科学院科技创新基金(批准号:CXJJ-16M112,CXJJ-15S089)和北京市自然科学基金(批准号:8154055)资助的课题.

摘要: 非线性光学相位共轭技术可将经过散射介质后产生畸变的光学波前进行修复.本文基于光参量放大(OPA)过程的光学相位共轭(OPC)特性,进行了光学相位共轭图像修复和增强的实验研究.基于大能量532 nm皮秒抽运激光和大口径非线性光学晶体KTiOPO4(KTP) (II类相位匹配),对经过牛奶乳浊液后已无法识别的1064 nm近红外光学图像,进行相位共轭修复,修复后的图像分辨率达12 线/mm,此外,结合OPA过程的光学增益特性,实现了超过17 dB的光学图像增强,为现有三波混频光学相位共轭修复畸变所获图像增益的最大值.在此基础上,峰值信噪比较修复之前有160\%的提升.考虑到光参量过程所具有的波长可调谐特性,在实际应用中,可根据需要,选择与生物组织的光学治疗窗口相匹配的成像波长,从而保证更长的穿透深度,提升生物组织成像和医学无损检测的效果.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回