搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Ag协同表面改性TiO2的第一性原理研究

李宗宝 王霞 周瑞雪 王应 李勇

引用本文:
Citation:

Cu-Ag协同表面改性TiO2的第一性原理研究

李宗宝, 王霞, 周瑞雪, 王应, 李勇

Surface modification in Cu-Ag codoped TiO2: the first-principle calculation

Li Zong-Bao, Wang Xia, Zhou Rui-Xue, Wang Ying, Li Yong
PDF
导出引用
  • 因在温室气体的降解中扮演重要的角色,通过改性来提高二氧化钛的光催化性能的相关研究备受关注.由于催化反应主要发生在材料表面,因此对材料表面的改性研究尤为重要.本文采用第一性原理方法计算了金属Ag,Cu单掺杂及协同掺杂TiO2(001)和(101)表面不同位置,通过形成能的比较获得了最稳定的晶体结构.通过对能带及态密度的对比得出:离子掺杂(001)表面所形成的活性基团的氧化性较(101)面更强,利于光催化氧化性能的提升;表面协同掺杂较单掺杂具有更强的光响应效率,与前人的实验结果符合较好.
    The photocatalytic properties of TiO2 improved by modifying its surface have attracted more and more attention, because they play an important role in the photocatalytic degradation of greenhouse gases. Based on the fact that the photocatalytic reactions main occur on the catalyst surface, the surface modification becomes an effective method to improve the photocatalyst properties while the reaction mechanism research can give us a clear picture about it. Using the first principle calculations, the formation energies of TiO2 are calculated with doped and codoped by Cu and Ag atoms at different positions of the (001) and (101) surfaces. Comparing the formation energies, the most stable crystal structures are obtained while the electronic structures are calculated. Based on the analysis of the band structures and the density of states of atoms, it is proved that the oxidation activity of the active group formed on the (001) surface is stronger than that on (101) surface, which is more conducive to the improvement of photocatalytic oxidation properties. Meanwhile, the TiO2 compounds codoped by bimetal on the two surfaces have better light response than doped by one species of ions, which is in good agreement with the former experimental results.
      通信作者: 王霞, wxmj1215@126.com
    • 基金项目: 贵州省自然科学基金(批准号:黔科合基础[2016]1150,黔科合LH 字[2015]7232号,黔科合LH 字[2015]7233号)资助的课题.
      Corresponding author: Wang Xia, wxmj1215@126.com
    • Funds: Project supported by the Natural Science Foundation of Guizhou Province, China (Grant Nos. [2016]1150, LH[2015]7232, LH[2015]7233).
    [1]

    Wang P, Grtze M 2003 Nat. Mater. 21 402

    [2]

    Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Str. 1061 160

    [3]

    Mills A, Hunte S L 1997 J. Photoch. Photobiol. A 8 1

    [4]

    Wang X J, Song J K, Huang J Y, Zhang J, Wang X, Ma R R, Wang J Y, Zhao J F 2016 Appl. Surf. Sci. 390 190

    [5]

    Li L, Zhuang H S, Bu D 2011 Appl. Surf. Sci. 257 9221

    [6]

    He Z Q, Hong T M, Chen J M, Song S 2012 Sep. Purif. Technol. 96 50

    [7]

    Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y 2015 Chin. J. Catal. 36 2049

    [8]

    Larumbe S, Monge M, Gmez-Polo C 2015 Appl. Surf. Sci. 327 490

    [9]

    Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301 (in Chinese) [杨光敏, 梁志聪, 黄海华 2017 物理学报 66 057301]

    [10]

    Fang W, Zhou Y, Dong C, Xing M, Zhang J 2016 Catal. Today 266 188

    [11]

    Singh S A, Madras G 2016 Appl. Catal. A: General 518 102

    [12]

    Zhang X, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401

    [13]

    Busiakiewicz A, Kisielewska A, Piwoński I, Batory D 2017 Appl. Surf. Sci. 401 378

    [14]

    Li Z B, Wang X, Jia L C, Xing X B 2017 Catal. Commun. 92 23

    [15]

    Kale M J, Avanesian T, Christopher P 2014 ACS Catal. 4 116

    [16]

    Park M S, Kang M 2008 Mater. Lett. 62 183

    [17]

    Park J W, Kang M 2007 Int J. Hydrog. Energy 32 4840

    [18]

    Rather R A, Singh S, Pal B 2017 Sol. Energ. Mat. Sol. C 160 463

    [19]

    Jaafar N F, Jalil A A, Triwahyono S 2017 Appl. Surf. Sci. 392 1068

    [20]

    Bandara J, Udawatta C P K, Rajapakse C S K 2005 Photochem. Photobiol. Sci. 4 857

    [21]

    Ghorbani H R, Attar H, Soltani S 2015 Indian J. Appl. Pure Biol. 30 139

    [22]

    Taner M, Sayar N, Yulug I G, Suzer S 2011 J. Mater. Chem. 21 13150

    [23]

    Liu J, Chen F 2012 Int. J. Electrochem. Sci. 7 9560

    [24]

    Kumar M K, Bhavani K, Naresh G, Srinivas B, Venugopal A 2016 Appl. Catal. B: Environ. 199 282

    [25]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [28]

    Ernzerhof B K M, Perdew J P 1996 Phys. Rev. Lett. 77 3865

    [29]

    Jia L C, Wu C C, Han S, Yao N, Li Y Y, Li Z Z, Chi B, Pu J, Li J 2011 J. Alloy. Compd. 509 6067

  • [1]

    Wang P, Grtze M 2003 Nat. Mater. 21 402

    [2]

    Li Z B, Wang X, Jia L C, Chi B 2014 J. Mol. Str. 1061 160

    [3]

    Mills A, Hunte S L 1997 J. Photoch. Photobiol. A 8 1

    [4]

    Wang X J, Song J K, Huang J Y, Zhang J, Wang X, Ma R R, Wang J Y, Zhao J F 2016 Appl. Surf. Sci. 390 190

    [5]

    Li L, Zhuang H S, Bu D 2011 Appl. Surf. Sci. 257 9221

    [6]

    He Z Q, Hong T M, Chen J M, Song S 2012 Sep. Purif. Technol. 96 50

    [7]

    Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y 2015 Chin. J. Catal. 36 2049

    [8]

    Larumbe S, Monge M, Gmez-Polo C 2015 Appl. Surf. Sci. 327 490

    [9]

    Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301 (in Chinese) [杨光敏, 梁志聪, 黄海华 2017 物理学报 66 057301]

    [10]

    Fang W, Zhou Y, Dong C, Xing M, Zhang J 2016 Catal. Today 266 188

    [11]

    Singh S A, Madras G 2016 Appl. Catal. A: General 518 102

    [12]

    Zhang X, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401

    [13]

    Busiakiewicz A, Kisielewska A, Piwoński I, Batory D 2017 Appl. Surf. Sci. 401 378

    [14]

    Li Z B, Wang X, Jia L C, Xing X B 2017 Catal. Commun. 92 23

    [15]

    Kale M J, Avanesian T, Christopher P 2014 ACS Catal. 4 116

    [16]

    Park M S, Kang M 2008 Mater. Lett. 62 183

    [17]

    Park J W, Kang M 2007 Int J. Hydrog. Energy 32 4840

    [18]

    Rather R A, Singh S, Pal B 2017 Sol. Energ. Mat. Sol. C 160 463

    [19]

    Jaafar N F, Jalil A A, Triwahyono S 2017 Appl. Surf. Sci. 392 1068

    [20]

    Bandara J, Udawatta C P K, Rajapakse C S K 2005 Photochem. Photobiol. Sci. 4 857

    [21]

    Ghorbani H R, Attar H, Soltani S 2015 Indian J. Appl. Pure Biol. 30 139

    [22]

    Taner M, Sayar N, Yulug I G, Suzer S 2011 J. Mater. Chem. 21 13150

    [23]

    Liu J, Chen F 2012 Int. J. Electrochem. Sci. 7 9560

    [24]

    Kumar M K, Bhavani K, Naresh G, Srinivas B, Venugopal A 2016 Appl. Catal. B: Environ. 199 282

    [25]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [28]

    Ernzerhof B K M, Perdew J P 1996 Phys. Rev. Lett. 77 3865

    [29]

    Jia L C, Wu C C, Han S, Yao N, Li Y Y, Li Z Z, Chi B, Pu J, Li J 2011 J. Alloy. Compd. 509 6067

  • [1] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [2] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [3] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [4] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [5] 高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐. Nd3+掺杂GdTaO4的吸收光谱分析和晶场计算. 物理学报, 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [6] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响. 物理学报, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [7] 高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐. 高浓度Er3+掺杂Y3Sc2Ga3O12晶体的吸收光谱与晶体场模型研究. 物理学报, 2014, 63(14): 144205. doi: 10.7498/aps.63.144205
    [8] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [9] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [10] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究. 物理学报, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [11] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [12] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [13] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [14] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [15] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [16] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响. 物理学报, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [17] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [18] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [19] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [20] 汪 洋, 孟 亮. TiO2表面氧空位对NO分子吸附的作用. 物理学报, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
计量
  • 文章访问数:  3160
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-04-07
  • 刊出日期:  2017-06-05

Cu-Ag协同表面改性TiO2的第一性原理研究

  • 1. 铜仁学院材料与化学工程学院, 铜仁 554300;
  • 2. 华南师范大学物理与电信工程学院, 广州 510006;
  • 3. 铜仁学院大数据学院, 铜仁 554300
  • 通信作者: 王霞, wxmj1215@126.com
    基金项目: 贵州省自然科学基金(批准号:黔科合基础[2016]1150,黔科合LH 字[2015]7232号,黔科合LH 字[2015]7233号)资助的课题.

摘要: 因在温室气体的降解中扮演重要的角色,通过改性来提高二氧化钛的光催化性能的相关研究备受关注.由于催化反应主要发生在材料表面,因此对材料表面的改性研究尤为重要.本文采用第一性原理方法计算了金属Ag,Cu单掺杂及协同掺杂TiO2(001)和(101)表面不同位置,通过形成能的比较获得了最稳定的晶体结构.通过对能带及态密度的对比得出:离子掺杂(001)表面所形成的活性基团的氧化性较(101)面更强,利于光催化氧化性能的提升;表面协同掺杂较单掺杂具有更强的光响应效率,与前人的实验结果符合较好.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回