搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼原(离)子内壳激发高自旋态能级和辐射跃迁

钱新宇 孙言 刘冬冬 胡峰 樊秋波 苟秉聪

引用本文:
Citation:

硼原(离)子内壳激发高自旋态能级和辐射跃迁

钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪

Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion)

Qian Xin-Yu, Sun Yan, Liu Dong-Dong, Hu Feng, Fan Qiu-Bo, Gou Bing-Cong
PDF
导出引用
  • 采用Rayleigh-Ritz变分方法计算了B原子(离子)内壳层激发高自旋态(4,5,6L,L=S,P)里德伯系列的能量和精细结构劈裂,利用截断变分方法改进非相对论能量,并利用一阶微扰理论计算了相对论能量修正和质量极化效应修正,利用屏蔽的类氢公式计算了量子电动力学效应和高阶相对论效应,从而得到了高精度的组态能量.利用精确计算的波函数,计算了这些高自旋态的电偶极辐射跃迁波长、振子强度和辐射跃迁概率.通过长度规范和速度规范计算的振子强度的一致性证明了本文计算的波函数是精确的.相比其他理论计算结果,本文计算的高自旋态的能级及跃迁波长数据与实验数据符合得更好.对于一些高位的内壳层激发高自旋态,相关的能级和跃迁数据为首次报道,本文的计算结果对相关实验光谱谱线标定具有重要意义.
    Energy levels of the core-excited high-spin Rydberg states (4,5,6L, L = S, P) in boron atom (ion) are calculated by the Rayleigh-Ritz variation method with using large-scale multi-configuration wave functions. The important orbital-spin angular momentum partial waves are selected based on the rule of configuration interaction. The computational convergence is discussed by the example of the contribution from each partial wave in the non-relativistic energy calculations of the high-spin state 1s2s2p2 5Pe in B+ ion. To saturate the wave functional space and improve the non-relativistic energy, the restricted variational method is used to calculate the restricted variational energy. Furthermore, the mass polarization effect and relativistic energy correction are included by using a first-order perturbation theory. The quantum electrodynamic effects and higher-order relativistic contributions to the energy levels are also calculated by the screened hydrogenic formula. Then, the accurate relativistic energy levels of these high-spin states of B atom (ion) are obtained by adding the non-relativistic energy and all corrections. The fine structure splitting of these high-spin states is also calculated by the Breit-Pauli operators in the first-order perturbation theory. Compared with other theoretical results, our calculation results are in good accordance with the experimental data. The absorption oscillator strengths, emission oscillator strengths, absorption rates, emission rates, and transition wavelengths of the electric-dipole transitions between these high-spin states of B atom (ions) are systematically calculated by using the optimized wave functions. The oscillator strengths and transition rates are obtained in both the length and velocity gauges. By comparing the two gauge results of oscillator strength, we find that there is a good consistency between them when fl 0.3, and a reasonable consistency is obtained when fl 0.3. The accordance between the length and the velocity gauge results reflects that the calculated wave functions in this work are reasonably accurate. The calculated transition data are also compared with the corresponding experimental and other theoretical data. Good agreement is obtained except the wavelengths for two transitions: 1s2p4p 4Se1s2p3d 4P and 1s2p4d 4P1s2p3p 4Pe. The relative differences between our theoretical results and experimental data are 0.7% and 0.3%, respectively. They need to be verified by further theoretical and experimental studies. For some core-excited high-spin states, the related energy levels and transition data are reported for the first time. Our calculation results will provide valuable data for calculating the spectral lines in the relevant experiments.
      通信作者: 孙言, suenyangu@163.com
    • 基金项目: 国家自然科学青年基金(批准号:11604284)和国家自然科学基金(批准号:11474020)资助的课题.
      Corresponding author: Sun Yan, suenyangu@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604284) and the National Natural Science Foundation of China (Grant No. 11474020).
    [1]

    Johansson S G, Litzn U, Kasten J, Kock M 1993 Astrophys. J. 403 L25

    [2]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H, Bastin T, Dsesquelles J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2797

    [3]

    Gu M F, Beiersdorfer P, Lepson J K 2011 Astrophys. J. 732 91

    [4]

    Martinson I, Bickel W S, Olrne A 1970 J. Opt. Soc. Am. 60 1213

    [5]

    Agentoft M, Andersen T, Chung K T 1984 J. Phys. B: At. Mol. Opt. Phys. 17 L433

    [6]

    Agentoft M, Andersen T, Chung K T, Davis B F 1985 Phys. Scr. 31 74

    [7]

    Chung K T, Bruch R, Trbert E, Heckmann P H 1984 Phys. Scr. 29 108

    [8]

    Baudinet-Robinet Y, Garnir H P, Dumont P D 1986 Phys. Rev. A 34 4722

    [9]

    Baudinet-Robinet Y, Dumont P D, Garnir H P, Trbert E, Heckmann P 1987 Z. Phys. D: Atoms, Molecules and Clusters 7 47

    [10]

    Mannervik S, Cederquist H, Martinson I 1986 Phys. Rev. A 34 231

    [11]

    Mannervik S, Cederquist H, Martinson I, Brage T, Fischer C F 1987 Phys. Rev. A 35 3136

    [12]

    Jannitti E, Nicolosi P, Tondello G 1984 Physica C 124 139

    [13]

    Lynam W G, Carroll P K, Costello J T, Evans D, O'Sullivant G 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3963

    [14]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, lme A, Martinson I 2005 Phys. Scr. 71 489

    [15]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [16]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301

    [17]

    Fuhr J R, Wiese W L 2010 J. Phys. Chem. Ref. Data 39 013101

    [18]

    Mller A, Schippers S, Phaneuf R A, Scully S W J, Aguilar A, Cisneros C, Gharaibeh M F, Schlachter A S, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135201

    [19]

    Beck D R, Nicolaides C A 1977 Phys. Lett. A 61 227

    [20]

    Gou B C, Deng W S 2000 Phys. Rev. A 62 032705

    [21]

    Yang H Y, Chung K T 1995 Phys. Rev. A 51 3621

    [22]

    Gou B C, Wang F 2004 Phys. Rev. A 69 042513

    [23]

    Qu L H, Wang Z W, Li B W 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2469

    [24]

    Qu L H, Wang Z W, Li B W 1998 Chin. Phys. Lett. 15 329

    [25]

    Sun Y, Liu D D, Mei M F, Zhang C M, Han C, Hu F, Gou B C 2015 J. Quant. Spectrosc. Radiat. Transfer 167 145

    [26]

    Brooks R L, Hardis J E, Berry H G, Curtis L J, Cheng K T, Ray W 1980 Phys. Rev. Lett. 45 1318

    [27]

    Larsson S, Crossley R 1982 Int. J. Quantum Chem. 22 837

    [28]

    Ritz W, Reine J 1908 Agnew. Math. 35 1

    [29]

    Chung K T 1979 Phys. Rev. A 20 1743

    [30]

    Davis B F, Chung K T 1984 Phys. Rev. A 29 1878

    [31]

    Drake G W F 1982 Adv. Mol. Phys. 18 399

    [32]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Dsequelles J, Savukov I 2003 Phys. Rev. A 67 062507

    [33]

    Sun Y, Gou B C, Zhu J J 2010 Acta Phys. Sin. 59 3878 (in Chinese) [孙言, 苟秉聪, 朱婧晶 2010 物理学报 59 3878]

    [34]

    Chung K T, Bruch R 1983 Phys. Rev. A 28 1418

  • [1]

    Johansson S G, Litzn U, Kasten J, Kock M 1993 Astrophys. J. 403 L25

    [2]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H, Bastin T, Dsesquelles J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2797

    [3]

    Gu M F, Beiersdorfer P, Lepson J K 2011 Astrophys. J. 732 91

    [4]

    Martinson I, Bickel W S, Olrne A 1970 J. Opt. Soc. Am. 60 1213

    [5]

    Agentoft M, Andersen T, Chung K T 1984 J. Phys. B: At. Mol. Opt. Phys. 17 L433

    [6]

    Agentoft M, Andersen T, Chung K T, Davis B F 1985 Phys. Scr. 31 74

    [7]

    Chung K T, Bruch R, Trbert E, Heckmann P H 1984 Phys. Scr. 29 108

    [8]

    Baudinet-Robinet Y, Garnir H P, Dumont P D 1986 Phys. Rev. A 34 4722

    [9]

    Baudinet-Robinet Y, Dumont P D, Garnir H P, Trbert E, Heckmann P 1987 Z. Phys. D: Atoms, Molecules and Clusters 7 47

    [10]

    Mannervik S, Cederquist H, Martinson I 1986 Phys. Rev. A 34 231

    [11]

    Mannervik S, Cederquist H, Martinson I, Brage T, Fischer C F 1987 Phys. Rev. A 35 3136

    [12]

    Jannitti E, Nicolosi P, Tondello G 1984 Physica C 124 139

    [13]

    Lynam W G, Carroll P K, Costello J T, Evans D, O'Sullivant G 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3963

    [14]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, lme A, Martinson I 2005 Phys. Scr. 71 489

    [15]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [16]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301

    [17]

    Fuhr J R, Wiese W L 2010 J. Phys. Chem. Ref. Data 39 013101

    [18]

    Mller A, Schippers S, Phaneuf R A, Scully S W J, Aguilar A, Cisneros C, Gharaibeh M F, Schlachter A S, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135201

    [19]

    Beck D R, Nicolaides C A 1977 Phys. Lett. A 61 227

    [20]

    Gou B C, Deng W S 2000 Phys. Rev. A 62 032705

    [21]

    Yang H Y, Chung K T 1995 Phys. Rev. A 51 3621

    [22]

    Gou B C, Wang F 2004 Phys. Rev. A 69 042513

    [23]

    Qu L H, Wang Z W, Li B W 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2469

    [24]

    Qu L H, Wang Z W, Li B W 1998 Chin. Phys. Lett. 15 329

    [25]

    Sun Y, Liu D D, Mei M F, Zhang C M, Han C, Hu F, Gou B C 2015 J. Quant. Spectrosc. Radiat. Transfer 167 145

    [26]

    Brooks R L, Hardis J E, Berry H G, Curtis L J, Cheng K T, Ray W 1980 Phys. Rev. Lett. 45 1318

    [27]

    Larsson S, Crossley R 1982 Int. J. Quantum Chem. 22 837

    [28]

    Ritz W, Reine J 1908 Agnew. Math. 35 1

    [29]

    Chung K T 1979 Phys. Rev. A 20 1743

    [30]

    Davis B F, Chung K T 1984 Phys. Rev. A 29 1878

    [31]

    Drake G W F 1982 Adv. Mol. Phys. 18 399

    [32]

    Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Dsequelles J, Savukov I 2003 Phys. Rev. A 67 062507

    [33]

    Sun Y, Gou B C, Zhu J J 2010 Acta Phys. Sin. 59 3878 (in Chinese) [孙言, 苟秉聪, 朱婧晶 2010 物理学报 59 3878]

    [34]

    Chung K T, Bruch R 1983 Phys. Rev. A 28 1418

  • [1] 牟致栋. Rh XIII—Cd XVI离子4s24p3—4s4p4能级与跃迁的理论计算. 物理学报, 2019, 68(6): 063101. doi: 10.7498/aps.68.20181976
    [2] 孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪. 类硼S离子K壳层激发共振态的辐射和俄歇跃迁. 物理学报, 2019, 68(16): 163101. doi: 10.7498/aps.68.20190481
    [3] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [4] 谭晓明, 赵刚, 张迪. BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响. 物理学报, 2016, 65(10): 107501. doi: 10.7498/aps.65.107501
    [5] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富. 激光冲击波压缩稠密铝辐射不透明度实验研究. 物理学报, 2013, 62(12): 125202. doi: 10.7498/aps.62.125202
    [6] 陈笋, 朱云霞, 葛自明, 贺黎明. 钠原子主线系精细结构的多体微扰计算. 物理学报, 2012, 61(15): 153104. doi: 10.7498/aps.61.153104
    [7] 刘尚宗, 颉录有, 丁晓彬, 董晨钟. 相对论效应对类锂离子能级结构及辐射跃迁性质的影响. 物理学报, 2012, 61(9): 093106. doi: 10.7498/aps.61.093106
    [8] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [9] 孙言, 苟秉聪, 朱婧晶. Li“洞原子”高位三激发态2 S(m)和2 D(m) (m=2—7)的能级、精细结构和Auger宽度. 物理学报, 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [10] 马怡培, 贺黎明, 张孟, 朱云霞. 钠原子nd高Rydberg系列能级精细结构的计算研究. 物理学报, 2009, 58(11): 7621-7626. doi: 10.7498/aps.58.7621
    [11] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质. 物理学报, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [12] 欧阳永中, 易有根, 朱正和, 郑志坚. 类铍离子磁四极M2 2s2 1S0—2s2p3P2 (Z=10—103)禁戒跃迁. 物理学报, 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [13] 吕海萍, 殷春浩, 魏雪松, 钮应喜, 宋 宁, 茹瑞鹏. LiNbO3∶Fe3+晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应. 物理学报, 2007, 56(11): 6608-6615. doi: 10.7498/aps.56.6608
    [14] 殷春浩, 焦 杨, 张 雷, 宋 宁, 茹瑞鹏, 杨 柳. CsNiCl3晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应. 物理学报, 2006, 55(11): 6047-6054. doi: 10.7498/aps.55.6047
    [15] 牟致栋, 魏琦瑛. MoⅩⅣ—RuⅩⅥ离子的3d104s—3d94s4p跃迁谱线波长和振子强度的计算. 物理学报, 2004, 53(6): 1742-1748. doi: 10.7498/aps.53.1742
    [16] 葛自明, 吕志伟, 王治文, 周雅君. 类锂体系激发态1s2 nd(n=3,4,5)精细结构和项能的理论计算. 物理学报, 2002, 51(12): 2733-2739. doi: 10.7498/aps.51.2733
    [17] 王菲, 芶秉聪, 韩利. 锂内壳高激发2smd4De,2pnd4Do系列的能量和辐射跃迁. 物理学报, 2001, 50(9): 1685-1688. doi: 10.7498/aps.50.1685
    [18] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构. 物理学报, 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [19] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
    [20] 韩利红, 苟秉聪, 王 菲. 类锂等电子系列高位三激发态2p2np4So能量和到1s2pmp4P态的辐射跃迁. 物理学报, 2000, 49(11): 2139-2145. doi: 10.7498/aps.49.2139
计量
  • 文章访问数:  2743
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-25
  • 修回日期:  2017-04-18
  • 刊出日期:  2017-06-05

硼原(离)子内壳激发高自旋态能级和辐射跃迁

  • 1. 徐州工程学院数学与物理科学学院, 徐州 221018;
  • 2. 北京理工大学物理学院, 北京 100081
  • 通信作者: 孙言, suenyangu@163.com
    基金项目: 国家自然科学青年基金(批准号:11604284)和国家自然科学基金(批准号:11474020)资助的课题.

摘要: 采用Rayleigh-Ritz变分方法计算了B原子(离子)内壳层激发高自旋态(4,5,6L,L=S,P)里德伯系列的能量和精细结构劈裂,利用截断变分方法改进非相对论能量,并利用一阶微扰理论计算了相对论能量修正和质量极化效应修正,利用屏蔽的类氢公式计算了量子电动力学效应和高阶相对论效应,从而得到了高精度的组态能量.利用精确计算的波函数,计算了这些高自旋态的电偶极辐射跃迁波长、振子强度和辐射跃迁概率.通过长度规范和速度规范计算的振子强度的一致性证明了本文计算的波函数是精确的.相比其他理论计算结果,本文计算的高自旋态的能级及跃迁波长数据与实验数据符合得更好.对于一些高位的内壳层激发高自旋态,相关的能级和跃迁数据为首次报道,本文的计算结果对相关实验光谱谱线标定具有重要意义.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回