搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质

邓世杰 赵宇宏 侯华 文志勤 韩培德

引用本文:
Citation:

高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质

邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德

Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure

Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法,计算研究了压力对Ti2AlC与Ti2AlN结构、力学性能的影响.研究发现压力的增大会使体系的体积比降低,Ti2AlC压缩性较Ti2AlN好.力学性能研究发现,压力的增大使材料抵抗变形能力增强,体系的延展性有了很大的提升,当压力超过40 GPa后,Ti2AlC与Ti2AlN从脆性材料转变为延性材料,体模量与剪切模量的比值达到1.75,延展性有了很大的提升.通过准谐德拜模型,分析了压力与温度对Ti2AlC与Ti2AlN体模量、热容及热膨胀系数的影响.结果表明,随着温度的升高,Ti2AlN与Ti2AlC的体模量下降.定容热容与定压热容的变化趋势相同,但在高温下,定容热容遵循Dulong-Petit极限,温度对热容的影响效果较压力明显.温度与压力对Ti2AlN与Ti2AlC线膨胀系数的影响主要发生在低温区域.
    The MAX phase has attracted much attention due to its unique properties combined with the merits of both metal and ceramic, including the low density, high electrical conductivity and good oxidation resistance, which makes it significant for possible applications in various high temperature or other environments. There is a lot of research work on Ti2AlX (X=C, N). However little research about thermodynamic properties at high pressure is carried out. So we study the structural, mechanical and thermodynamic properties of Ti2AlC and Ti2AlN at various pressures and temperatures. The first-principles calculations based on electronic density-functional theory framework are used to investigate the properties at various pressures. The cut-off energy is 350 eV. Converged results are achieved with 10102 special K-point meshes. The self-consistent convergence of total energy is set to be 5.010-6 eV/atom. According to the calculated structural parameters at various pressures, we can find that the ratios V/V0 (V0 denotes the system volume at 0 GPa) of Ti2AlX are reduced by 20.59% and 18.93%, respectively, so the compressibility of the system is strong. As the internal pressure increases, the curves of V/V0 become gentle. Then we calculate elastic constants at pressures ranging from 0 to 50 GPa in steps of 10 GPa. It is obvious that the Ti2AlX is mechanically stable because all of the elastic constants satisfy the Born stability criteria. The bulk modulus, shear modulus and Young's modulus linearly increase with internal pressure increasing, implying that the pressure can improve the resistance to volume deformation. The ductility and brittleness can be judged according to Pugh's criterion (ratio of bulk modulus to shear modulus B/G), and the brittle nature turns into ductile nature in a pressure range of 40-50 GPa for the Ti2AlX since the value of B/G exceeds 1.75. Finally, we study the thermodynamic properties at various pressures and temperatures based on the quasi-harmonic Debye approximation theory, including the bulk modulus, heat capacity and thermal expansion coefficient. The bulk modulus decreases with temperature increasing but increases with pressure increasing. The heat capacity at constant volume Cv and the heat capacity at constant pressure Cp have the same variation tendency, while Cv obeys the Dulong-Petit limit. It is easy to see that temperature and pressure have opposite influences on heat capacity and the effect of temperature is more significant than that of pressure. The effects of temperature and pressure on linear expansion coefficient mainly occur at low temperature and the effect of pressure is not so considerable when the pressure exceeds 30 GPa. Above all, the effects of temperature and pressure on thermodynamic properties are inverse.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1610123,51674226,51574207,51574206,51274175)资助的课题.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1610123, 51674226, 51574207, 51574206, 51274175).
    [1]

    Barsoum M W 2000 Prog. Solid State Chem. 28 201

    [2]

    Barsoum M W, El-Raghy T 2001 Am. Sci. 89 334

    [3]

    Keast V J, Harris S, Smith D K 2009 Phys. Rev. 80 308

    [4]

    Aryal S, Sakidja R, Ouyang L, Ching W Y 2015 J. Eur. Ceram. Soc. 35 3219

    [5]

    Ching W, Mo Y, Aryal S, Rulis P 2013 J. Am. Ceram. Soc. 96 2292

    [6]

    Atazadeh N, Heydari M S, Baharvandi H R, Ehsani N 2016 Int. J. Refract. Met. Hard Mater. 61 67

    [7]

    Xiao J, Yang T, Wang C, Xue J, Wang Y 2015 J. Am. Ceram. Soc. 98 1323

    [8]

    Du Y L, Sun Z M, Hashimoto H, Barsoum M W 2009 Phys. Lett. A 374 78

    [9]

    Manoun B, Zhang F X, Saxena S K, EI-Raghy T, Barsoum M W 2006 Phys. Chem. Solids 67 2091

    [10]

    Zhu J, Lin H, Zhu C C, Bai Y L 2013 Rare Metal Mat. Eng. 42 290 (in Chinese) [朱佳, 林红, 朱春城, 柏跃磊 2013 稀有金属材料与工程 42 290]

    [11]

    Li H, Luo Z L, Liu Z, Xia Y X, Han X X, Yu H Y, Sun G D 2016 J. Synth. Cryst. 45 2406 (in Chinese) [李辉, 罗至利, 刘哲, 夏晓宇, 韩旭旭, 余鸿洋, 孙国栋 2016 人工晶体学报 45 2406]

    [12]

    Segal M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter. 14 2717

    [13]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Born M 1940 Proc. Cambridge Phil. Soc. 36 160

    [16]

    Hu J Q, Xie M, Chen J L, Liu M M, Chen Y T, Wang S, Wang S B, Li A K 2017 Acta Phys. Sin. 66 057102 (in Chinese) [胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤 2017 物理学报 66 057102]

    [17]

    Pugh S F 1954 Philos. Mag. 45 823

    [18]

    Blanco M A, Francisco E, Luaa V 2004 Comput. Phys. Commun. 158 57

    [19]

    Otero-De-La-Roza A, Abbasi-Prez D, Luaa V 2011 Comput. Phys. Commun. 182 2232

    [20]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

  • [1]

    Barsoum M W 2000 Prog. Solid State Chem. 28 201

    [2]

    Barsoum M W, El-Raghy T 2001 Am. Sci. 89 334

    [3]

    Keast V J, Harris S, Smith D K 2009 Phys. Rev. 80 308

    [4]

    Aryal S, Sakidja R, Ouyang L, Ching W Y 2015 J. Eur. Ceram. Soc. 35 3219

    [5]

    Ching W, Mo Y, Aryal S, Rulis P 2013 J. Am. Ceram. Soc. 96 2292

    [6]

    Atazadeh N, Heydari M S, Baharvandi H R, Ehsani N 2016 Int. J. Refract. Met. Hard Mater. 61 67

    [7]

    Xiao J, Yang T, Wang C, Xue J, Wang Y 2015 J. Am. Ceram. Soc. 98 1323

    [8]

    Du Y L, Sun Z M, Hashimoto H, Barsoum M W 2009 Phys. Lett. A 374 78

    [9]

    Manoun B, Zhang F X, Saxena S K, EI-Raghy T, Barsoum M W 2006 Phys. Chem. Solids 67 2091

    [10]

    Zhu J, Lin H, Zhu C C, Bai Y L 2013 Rare Metal Mat. Eng. 42 290 (in Chinese) [朱佳, 林红, 朱春城, 柏跃磊 2013 稀有金属材料与工程 42 290]

    [11]

    Li H, Luo Z L, Liu Z, Xia Y X, Han X X, Yu H Y, Sun G D 2016 J. Synth. Cryst. 45 2406 (in Chinese) [李辉, 罗至利, 刘哲, 夏晓宇, 韩旭旭, 余鸿洋, 孙国栋 2016 人工晶体学报 45 2406]

    [12]

    Segal M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter. 14 2717

    [13]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Born M 1940 Proc. Cambridge Phil. Soc. 36 160

    [16]

    Hu J Q, Xie M, Chen J L, Liu M M, Chen Y T, Wang S, Wang S B, Li A K 2017 Acta Phys. Sin. 66 057102 (in Chinese) [胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤 2017 物理学报 66 057102]

    [17]

    Pugh S F 1954 Philos. Mag. 45 823

    [18]

    Blanco M A, Francisco E, Luaa V 2004 Comput. Phys. Commun. 158 57

    [19]

    Otero-De-La-Roza A, Abbasi-Prez D, Luaa V 2011 Comput. Phys. Commun. 182 2232

    [20]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

  • [1] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质. 物理学报, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [2] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [3] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [4] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [6] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [7] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [9] 赵玉娜, 高涛, 吕金钟, 马俊刚. Li-N-H储氢体系热力学性质的第一性原理研究. 物理学报, 2013, 62(14): 143101. doi: 10.7498/aps.62.143101
    [10] 张炜, 陈文周, 王俊斐, 张小东, 姜振益. MnPd合金相变, 弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [11] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [12] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [13] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [14] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究. 物理学报, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [15] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [17] 王海燕, 崔红保, 历长云, 李旭升, 王狂飞. AlAs相变及热动力学性质的第一性原理研究. 物理学报, 2009, 58(8): 5598-5603. doi: 10.7498/aps.58.5598
    [18] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [19] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [20] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质. 物理学报, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
计量
  • 文章访问数:  3089
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-26
  • 修回日期:  2017-05-08
  • 刊出日期:  2017-07-05

高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质

  • 1. 中北大学材料科学与工程学院, 太原 030051;
  • 2. 太原理工大学材料科学与工程学院, 太原 030024
  • 通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    基金项目: 国家自然科学基金(批准号:U1610123,51674226,51574207,51574206,51274175)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理方法,计算研究了压力对Ti2AlC与Ti2AlN结构、力学性能的影响.研究发现压力的增大会使体系的体积比降低,Ti2AlC压缩性较Ti2AlN好.力学性能研究发现,压力的增大使材料抵抗变形能力增强,体系的延展性有了很大的提升,当压力超过40 GPa后,Ti2AlC与Ti2AlN从脆性材料转变为延性材料,体模量与剪切模量的比值达到1.75,延展性有了很大的提升.通过准谐德拜模型,分析了压力与温度对Ti2AlC与Ti2AlN体模量、热容及热膨胀系数的影响.结果表明,随着温度的升高,Ti2AlN与Ti2AlC的体模量下降.定容热容与定压热容的变化趋势相同,但在高温下,定容热容遵循Dulong-Petit极限,温度对热容的影响效果较压力明显.温度与压力对Ti2AlN与Ti2AlC线膨胀系数的影响主要发生在低温区域.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回