搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金中的流变单元

王峥 汪卫华

引用本文:
Citation:

非晶合金中的流变单元

王峥, 汪卫华

Flow unit model in metallic glasses

Wang Zheng, Wang Wei-Hua
PDF
导出引用
  • 非晶合金是一类具有诸多优异性能的先进金属材料,同时也是研究非晶态物质的模型体系.最近,大量的实验和模拟证据显示,在非晶合金中可能存在类似晶体中缺陷的“流变单元”,这些动力学单元和非晶合金的的流变、物理、力学性能密切关联.本文主要综述了流变单元提出的背景、实验证据、流变单元的特征、激活与演化过程、相互作用以及相关的理论.文中提供了大量实验证据证明流变单元模型不仅可以帮助理解非晶态物质中如形变、玻璃转变、弛豫动力学以及非晶结构和性能的关系等重要的基本物理问题,而且可以指导非晶合金性能的调控和设计,获得性能优异的非晶合金材料.
    Metallic glass is a promising metallic material with many unique properties, and also considered as a model system to study the mysteries of amorphous materials. Recently, many experimental and simulation results supported the existence of “flow unit” in metallic glass. In this paper, we review the background, the theoretical and experimental evidences of flow unit model. Flow units are considered as those loosely packed regions embedded inside the elastic matrix and behave like viscous liquid. Compared with the matrix, flow unit regions have low modulus and strength, low viscosity, high atomic mobility and stand in the saddle points on energy landscape. Therefore, flow units can be treated as dynamical defects in metallic glass. The feature, activation and evolution process of flow unit region in metallic glass as well as their correlation with property in metallic glass are also reviewed. Through dynamical mechaincal methods like dynamical mechanical spectra and stress relaxation, flow unit region and its properties can be distinguished and studied. A three-parameter physical model is proposed to describe the mechnical behaivors of flow units. The activations and evolutions of flow unit under different temperature and strain conditions are studied. A three-stage evolution process is found and the relation with mechanical performance and relaxation behavior is established. The characteristics of flow units are also related to various properties of metallic glass, like plasticity, strength, fracture and boson peaks. By using the thermal, mechanical and high pressure aging procedues, the properties of metallic glass can be manipulated as desired through adjusting the density of flow units. We show that the flow unit model not only helps to understand the mechanism behind many long-standing issues like deformation, glass transition dynamic relaxations, and the connection between strucutre and properties and performance of metallic glasses, but also is crucial for tuning and designing the properties of metallic glasses.
      Corresponding author: Wang Zheng, wangzhenglofty@gmail.com;whw@iphy.ac.cn ; Wang Wei-Hua, wangzhenglofty@gmail.com;whw@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856800), the National Natural Science Foundation of China (Grant Nos. 51271195, 5141101072), and the Key Project of Chinese Academy of Sciences.
    [1]

    Macfarlane A, Martin G 2011 The Glass Bathyscaphe: How Glass Changed the World (Profile Books)

    [2]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [3]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [4]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [5]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [6]

    Greer A, Ma E 2007 MRS Bull. 32 611

    [7]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M 2011 Phys. Rev. Lett. 106 125504

    [8]

    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439

    [9]

    Hirth J P 1968 Theory of Dislocations (New York., Mcgraw Hill Book Company)

    [10]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [11]

    Spaepen F 1977 Acta Metall. 25 407

    [12]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [13]

    Argon A 1979 Acta Metall. 27 47

    [14]

    Falk M, Langer J 1998 Phys. Rev. E 57 7192

    [15]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [16]

    Schall P, Weitz D A, Spaepen F 2007 Science 318 1895

    [17]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [18]

    Keys A S, Abate A R, Glotzer S C, Durian D J 2007 Nat. Phys. 3 260

    [19]

    Richert R 2010 Eur. Phys. J. Spec. Top. 189 223

    [20]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [21]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [22]

    Ngai K, Lunkenheimer P, Leon C, Schneider U, Brand R, Loidl A 2001 J. Chem. Phys. 115 1405

    [23]

    Kê T S 1949 J. Appl. Phys. 20 274

    [24]

    Hu L N, Yue Y 2008 J. Phys. Chem. B 112 9053

    [25]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183

    [26]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429

    [27]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. : Condens. Matter 23 142202

    [28]

    Zhu Z G, Li Y, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K, Wang W H 2014 J. Chem. Phys. 141 084506

    [29]

    Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106 031907

    [30]

    Xue R J, Zhao L, Zhang B, Bai H Y, Wang W H, Pan M X 2015 Appl. Phys. Lett. 107 241902

    [31]

    Wang Z 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王峥 2013 博士学位论文 (北京: 中国科学院大学)]

    [32]

    Wang W H 2014 Sci. China: Phys. Mech. Astron. 4 6 (in Chinese) [汪卫华 2014 中国科学: 物理学 力学 天文学 4 6]

    [33]

    Liu S T, Jiao W, Sun B A, Wang W H 2013 J. Non-Cryst. Solids 3 76

    [34]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823

    [35]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [36]

    Huo L S, Zeng J, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [37]

    Huo L S 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [霍利山 2013 博士学位论文 (北京: 中国科学院大学)]

    [38]

    Makarov A, Khonik V, Mitrofanov Y P, Granato A, Joncich D, Khonik S 2013 Appl. Phys. Lett. 102 091908

    [39]

    Li Y Z, Zhao L Z, Wang C, Lu Z, Bai H Y, Wang W H 2015 J. Chem. Phys. 143 041104

    [40]

    Lacks D J, Osborne M J 2004 Phys. Rev. Lett. 93 255501

    [41]

    Guan P, Chen M, Egami T 2010 Phys. Rev. Lett. 104 205701

    [42]

    Lu Z, Yang X, Sun B A, Li Y, Chen K, Wang W H, Bai H Y 2017 Scr. Mater. 130 229

    [43]

    Liu S T, Wang Z, Peng H, Yu H, Wang W H 2012 Scr. Mater. 67 9

    [44]

    Sun Y T, Cao C, Huang K, Shi J, Zhao L, Li M, Bai H, Gu L, Zheng D, Wang W H 2016 Intermetallics 74 31

    [45]

    Krausser J, Samwer K H, Zaccone A 2015 Proc. Natl. Acad. Sci. USA 112 13762

    [46]

    Wang Z, Ngai K, Wang W H 2015 J. Appl. Phys. 118 034901

    [47]

    Jiang H Y, Luo P, Wen P, Bai H Y, Wang W H, Pan M 2016 J. Appl. Phys. 120 145106

    [48]

    Yue Y, Angell C A 2004 Nature 427 717

    [49]

    Jiao W, Wen P, Peng H, Bai H Y, Sun B A, Wang W 2013 Appl. Phys. Lett. 102 101903

    [50]

    Cao X F, Gao M, Zhao L, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 084906

    [51]

    Zhao L Z, Xue R, Li Y, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 244901

    [52]

    Ge T P, Gao X, Huang B, Wang W H, Bai H Y 2015 Intermetallics 67 47

    [53]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905

    [54]

    Zhao L Z, Xue R, Zhu Z, Lu Z, Axinte E, Wang W H, Bai H Y 2014 J. Appl. Phys. 116 103516

    [55]

    Lewandowski J, Wang W H, Greer A 2005 Philos. Mag. Lett. 85 77

    [56]

    Wang D, Zhao D, Ding D, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 123507

    [57]

    Xi X K, Zhao D, Pan M X, Wang W H, Wu Y, Lewandowski J 2005 Phys. Rev. Lett. 94 125510

    [58]

    Gao M, Ding D, Zhao D, Bai H Y, Wang W H 2014 Mater. Sci. Eng. A 617 89

    [59]

    Gao M, Cao X, Ding D, Wang B, Wang W H 2017 Mater. Sci. Eng. A 686 65

    [60]

    Huang B, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 153505

    [61]

    Wang D, Zhu Z, Xue R, Ding D, Bai H Y, Wang W H 2013 J. Appl. Phys. 114 173505

    [62]

    Xue R J, Wang D, Zhu Z, Ding D, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [63]

    Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M, Richert R 2015 Phys. Rev. Lett. 115 185501

    [64]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [65]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [66]

    Ketov S, Sun Y, Nachum S, Lu Z, Checchi A, Beraldin A, Bai H Y, Wang W H, Louzguine-Luzgin D, Carpenter M, Greer A L 2015 Nature 524 200

    [67]

    Xue R J, Zhao L Z, Shi C, Ma T, Xi X, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H, Bai H Y 2016 Appl. Phys. Lett. 109 221904

    [68]

    Wang C, Yang Z Z, Ma T, Sun Y T, Yin Y Y, Gong Y, Gu L, Wen P, Zhu P, Long Y W, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 111901

  • [1]

    Macfarlane A, Martin G 2011 The Glass Bathyscaphe: How Glass Changed the World (Profile Books)

    [2]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [3]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [4]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [5]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [6]

    Greer A, Ma E 2007 MRS Bull. 32 611

    [7]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M 2011 Phys. Rev. Lett. 106 125504

    [8]

    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439

    [9]

    Hirth J P 1968 Theory of Dislocations (New York., Mcgraw Hill Book Company)

    [10]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [11]

    Spaepen F 1977 Acta Metall. 25 407

    [12]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [13]

    Argon A 1979 Acta Metall. 27 47

    [14]

    Falk M, Langer J 1998 Phys. Rev. E 57 7192

    [15]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [16]

    Schall P, Weitz D A, Spaepen F 2007 Science 318 1895

    [17]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [18]

    Keys A S, Abate A R, Glotzer S C, Durian D J 2007 Nat. Phys. 3 260

    [19]

    Richert R 2010 Eur. Phys. J. Spec. Top. 189 223

    [20]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [21]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [22]

    Ngai K, Lunkenheimer P, Leon C, Schneider U, Brand R, Loidl A 2001 J. Chem. Phys. 115 1405

    [23]

    Kê T S 1949 J. Appl. Phys. 20 274

    [24]

    Hu L N, Yue Y 2008 J. Phys. Chem. B 112 9053

    [25]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183

    [26]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429

    [27]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. : Condens. Matter 23 142202

    [28]

    Zhu Z G, Li Y, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K, Wang W H 2014 J. Chem. Phys. 141 084506

    [29]

    Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106 031907

    [30]

    Xue R J, Zhao L, Zhang B, Bai H Y, Wang W H, Pan M X 2015 Appl. Phys. Lett. 107 241902

    [31]

    Wang Z 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王峥 2013 博士学位论文 (北京: 中国科学院大学)]

    [32]

    Wang W H 2014 Sci. China: Phys. Mech. Astron. 4 6 (in Chinese) [汪卫华 2014 中国科学: 物理学 力学 天文学 4 6]

    [33]

    Liu S T, Jiao W, Sun B A, Wang W H 2013 J. Non-Cryst. Solids 3 76

    [34]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823

    [35]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [36]

    Huo L S, Zeng J, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [37]

    Huo L S 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [霍利山 2013 博士学位论文 (北京: 中国科学院大学)]

    [38]

    Makarov A, Khonik V, Mitrofanov Y P, Granato A, Joncich D, Khonik S 2013 Appl. Phys. Lett. 102 091908

    [39]

    Li Y Z, Zhao L Z, Wang C, Lu Z, Bai H Y, Wang W H 2015 J. Chem. Phys. 143 041104

    [40]

    Lacks D J, Osborne M J 2004 Phys. Rev. Lett. 93 255501

    [41]

    Guan P, Chen M, Egami T 2010 Phys. Rev. Lett. 104 205701

    [42]

    Lu Z, Yang X, Sun B A, Li Y, Chen K, Wang W H, Bai H Y 2017 Scr. Mater. 130 229

    [43]

    Liu S T, Wang Z, Peng H, Yu H, Wang W H 2012 Scr. Mater. 67 9

    [44]

    Sun Y T, Cao C, Huang K, Shi J, Zhao L, Li M, Bai H, Gu L, Zheng D, Wang W H 2016 Intermetallics 74 31

    [45]

    Krausser J, Samwer K H, Zaccone A 2015 Proc. Natl. Acad. Sci. USA 112 13762

    [46]

    Wang Z, Ngai K, Wang W H 2015 J. Appl. Phys. 118 034901

    [47]

    Jiang H Y, Luo P, Wen P, Bai H Y, Wang W H, Pan M 2016 J. Appl. Phys. 120 145106

    [48]

    Yue Y, Angell C A 2004 Nature 427 717

    [49]

    Jiao W, Wen P, Peng H, Bai H Y, Sun B A, Wang W 2013 Appl. Phys. Lett. 102 101903

    [50]

    Cao X F, Gao M, Zhao L, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 084906

    [51]

    Zhao L Z, Xue R, Li Y, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 244901

    [52]

    Ge T P, Gao X, Huang B, Wang W H, Bai H Y 2015 Intermetallics 67 47

    [53]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905

    [54]

    Zhao L Z, Xue R, Zhu Z, Lu Z, Axinte E, Wang W H, Bai H Y 2014 J. Appl. Phys. 116 103516

    [55]

    Lewandowski J, Wang W H, Greer A 2005 Philos. Mag. Lett. 85 77

    [56]

    Wang D, Zhao D, Ding D, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 123507

    [57]

    Xi X K, Zhao D, Pan M X, Wang W H, Wu Y, Lewandowski J 2005 Phys. Rev. Lett. 94 125510

    [58]

    Gao M, Ding D, Zhao D, Bai H Y, Wang W H 2014 Mater. Sci. Eng. A 617 89

    [59]

    Gao M, Cao X, Ding D, Wang B, Wang W H 2017 Mater. Sci. Eng. A 686 65

    [60]

    Huang B, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 153505

    [61]

    Wang D, Zhu Z, Xue R, Ding D, Bai H Y, Wang W H 2013 J. Appl. Phys. 114 173505

    [62]

    Xue R J, Wang D, Zhu Z, Ding D, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [63]

    Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M, Richert R 2015 Phys. Rev. Lett. 115 185501

    [64]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [65]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [66]

    Ketov S, Sun Y, Nachum S, Lu Z, Checchi A, Beraldin A, Bai H Y, Wang W H, Louzguine-Luzgin D, Carpenter M, Greer A L 2015 Nature 524 200

    [67]

    Xue R J, Zhao L Z, Shi C, Ma T, Xi X, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H, Bai H Y 2016 Appl. Phys. Lett. 109 221904

    [68]

    Wang C, Yang Z Z, Ma T, Sun Y T, Yin Y Y, Gong Y, Gu L, Wen P, Zhu P, Long Y W, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 111901

  • [1] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究. 物理学报, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [2] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [3] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [4] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [5] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [6] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [7] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [8] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [9] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [10] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [11] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [12] 支启军. N=28丰中子核的形变和形状共存研究. 物理学报, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [13] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [14] 吴学邦, 尚淑英, 许巧玲, 水嘉鹏, 朱震刚. 在玻璃转变温度及其以上温区聚苯乙烯/聚氧化乙烯共混物的动力学弛豫行为. 物理学报, 2007, 56(8): 4798-4803. doi: 10.7498/aps.56.4798
    [15] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [16] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [17] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究. 物理学报, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [18] 赵作峰, 张志, 李 正, 闻 平, 赵德乾, 潘明祥, 王万录, 汪卫华. 新型Pr基大块非晶及其特性研究. 物理学报, 2004, 53(3): 850-853. doi: 10.7498/aps.53.850
    [19] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [20] 李 正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华. 永磁性Pr55Al12Fe30Cu3 大块金属玻璃. 物理学报, 2003, 52(3): 652-655. doi: 10.7498/aps.52.652
计量
  • 文章访问数:  4339
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-06-04
  • 刊出日期:  2017-09-05

非晶合金中的流变单元

    基金项目: 国家重点基础研究发展计划(批准号:2015CB856800)、国家自然科学基金(批准号:51271195,5141101072)和中国科学院前沿局重点项目资助的课题.

摘要: 非晶合金是一类具有诸多优异性能的先进金属材料,同时也是研究非晶态物质的模型体系.最近,大量的实验和模拟证据显示,在非晶合金中可能存在类似晶体中缺陷的“流变单元”,这些动力学单元和非晶合金的的流变、物理、力学性能密切关联.本文主要综述了流变单元提出的背景、实验证据、流变单元的特征、激活与演化过程、相互作用以及相关的理论.文中提供了大量实验证据证明流变单元模型不仅可以帮助理解非晶态物质中如形变、玻璃转变、弛豫动力学以及非晶结构和性能的关系等重要的基本物理问题,而且可以指导非晶合金性能的调控和设计,获得性能优异的非晶合金材料.

English Abstract

参考文献 (68)

目录

    /

    返回文章
    返回