搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂巢光子晶格中光波的无衍射和反常折射

饶冰洁 刘圣 赵建林

引用本文:
Citation:

蜂巢光子晶格中光波的无衍射和反常折射

饶冰洁, 刘圣, 赵建林

Non-diffraction propagation and anomalous refraction of light wave in honeycomb photonic lattices

Rao Bing-Jie, Liu Sheng, Zhao Jian-Lin
PDF
导出引用
  • 空间频率模式的光子带隙反映了光波在周期性结构中的线性传输特性.以这种线性传输特性为基础,研究了蜂巢光子晶格中光波的无衍射和反常折射.通过详细分析带隙结构第一通带上的衍射与折射特性,得出了光波发生反常衍射和折射的入射条件.匹配不同的入射条件,数值模拟了光波的无衍射传输和反常折射现象.结果表明:将入射光束的波矢设置在蜂巢晶格布里渊区中正常、反常衍射区的交界处,可使高斯光束沿x轴、y轴方向的衍射得到有效抑制;以多光束干涉场作为入射光场,可对蜂巢晶格进行模式匹配,激发第二布里渊区的传输模式;进一步将模式匹配后入射光场的波矢设置在反常折射区,可实现光波的反常折射.
    Photonic band-gap of light wave in spatial frequency model depicts the linear propagation characteristics of the light wave in period structures, based on which the linear diffraction and refraction of light are defined. In this paper, we numerically study the non-diffraction propagation and anomalous refraction of light waves in honeycomb photonic lattices according to the diffraction relationship of the photonic band-gap.By calculating the photonic band-gap structure, the linear propagation characteristics in the first transmission band are analyzed. The first Brillouin zone of the honeycomb lattice can be divided into different diffraction (Dx and Dy) and refraction regions (Δx and Δy), according to the definitions of light diffraction and refraction along the x-and y-axis. Light wave can present normal, anomalous diffraction and even non-diffraction when the wave vector matches the regions of Dx, y Dx, y > 0 and Dx, y=0, respectively. And the wave experiences the positive, negative refractions, and non-deflection when the refraction region meets the conditions:Δx, y x, y > 0 and Δx, y=0, respectively.By matching the input wave vectors to the contour lines of Dx=0 and Dy=0, we can realize the non-diffraction propagation along the x-and y-axis, respectively. When the input wave vector is set to be (0, 0), the light wave experiences normal diffraction and beam size is broadened. When the wave vector matches the point where Dy=0, the diffraction in the y-axis is obviously suppressed. To totally restrain the beam diffraction, the wave vector is set to be at the point where Dx=Dy=0. There are six intersections on the contour lines of Dx=0 and Dy=0, and these intersections are named non-diffraction points.The refraction of light can be also controlled by adjusting the input wave vector. When the wave vector is located on the contours of Δy=0, light wave propagates along the x-axis, without shifting along the y-axis. To excite the negative refractions, we need to match the input light wave to the eigen modes of the lattice, and adjust the wave vector to the negative refraction regions. We set the input wave vector to be kx > 0 and ky > 0, so that the beam would be output in the first quadrant of the coordinate if refracted normally. The eigen modes are approximated by multi-wave superposition, and the wave vector is adjusted to different refraction regions. From the numerical results of the light propagations, it is clearly seen that the propagations of a good portion of light energy follow the preconceived negative refractions, and output field is in the fourth, third, second, and third quadrant, respectively. Notably, the light waves generated by multi-wave superposition not only contain the eigen modes we need, but also include other modes. As a result, there are also energy outputs arising from the undesired modes in the other quadrants.The above conclusions are expected to provide a reference for the optical mechanisms of graphene-like optical phenomena in honeycomb photonic lattices.
      通信作者: 赵建林, jlzhao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61675168,11634010)和国家自然科学基金委员会中国工程物理研究院联合基金(批准号:U1630125)资助的课题.
      Corresponding author: Zhao Jian-Lin, jlzhao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675168, 11634010) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630125).
    [1]

    Eisenberg H S, Silberberg Y S 2000 Phys. Rev. Lett. 85 1863

    [2]

    Pertsch T, Zentgraf T, Peschel U, Bräuer A, Lederer F 2002 Phys. Rev. Lett. 88 093901

    [3]

    Rosberg C R, Neshev D N, Sukhorukov A A, Kivshar Y S, Krolikowski W 2005 Opt. Lett. 30 2293

    [4]

    Liu S, Zhang P, Xiao F J, Yang D X, Zhao J L 2009 Sci. China G 52 747

    [5]

    Zhang P, Liu S, Zhao J L, Lou C B, Xu J J, Chen Z G 2008 Opt. Lett. 33 878

    [6]

    Liu S, Hu Y, Zhang P, Gan X T, Xiao F J, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2011 Opt. Lett. 36 1167

    [7]

    Zhang P, Lou C B, Liu S, Zhao J L, Xu J J, Chen Z G 2010 Opt. Lett. 35 892

    [8]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Opt. Lett. 37 2184

    [9]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Appl. Phys. Lett. 100 061907

    [10]

    Yeh P, Yariv A, Hong C 1977 J. Opt. Soc. Am. 67 423

    [11]

    Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Pertsch T, Peschel U, Lederer F 2006 Phys. Rev. Lett. 96 053903

    [12]

    Liu S, Rao B J, Wang M R, Zhang P, Xiao F J, Gan X T, Zhao J L 2017 Opt. Express 25 7475

    [13]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52

    [14]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [15]

    Bahat-Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [16]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [17]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A 2014 Nat. Mater. 13 57

    [18]

    Rechtsman M C, Zeuner J M, Tnnermann A, Nolte S, Segev M, Szameit A 2013 Nat. Photon. 7 153

    [19]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [20]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Xu J, Ablowitz M, Efremidis N K, Chen Z 2015 Nat. Commun. 6 6272

    [21]

    Song D, Liu S, Paltoglou V, Gallardo D, Tang L, Zhao J, Xu J, Efremidis N K, Chen Z 2015 D Mater. 2 034007

    [22]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [23]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

  • [1]

    Eisenberg H S, Silberberg Y S 2000 Phys. Rev. Lett. 85 1863

    [2]

    Pertsch T, Zentgraf T, Peschel U, Bräuer A, Lederer F 2002 Phys. Rev. Lett. 88 093901

    [3]

    Rosberg C R, Neshev D N, Sukhorukov A A, Kivshar Y S, Krolikowski W 2005 Opt. Lett. 30 2293

    [4]

    Liu S, Zhang P, Xiao F J, Yang D X, Zhao J L 2009 Sci. China G 52 747

    [5]

    Zhang P, Liu S, Zhao J L, Lou C B, Xu J J, Chen Z G 2008 Opt. Lett. 33 878

    [6]

    Liu S, Hu Y, Zhang P, Gan X T, Xiao F J, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2011 Opt. Lett. 36 1167

    [7]

    Zhang P, Lou C B, Liu S, Zhao J L, Xu J J, Chen Z G 2010 Opt. Lett. 35 892

    [8]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Opt. Lett. 37 2184

    [9]

    Liu S, Hu Y, Zhang P, Gan X T, Lou C B, Song D H, Zhao J L, Xu J J, Chen Z G 2012 Appl. Phys. Lett. 100 061907

    [10]

    Yeh P, Yariv A, Hong C 1977 J. Opt. Soc. Am. 67 423

    [11]

    Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Pertsch T, Peschel U, Lederer F 2006 Phys. Rev. Lett. 96 053903

    [12]

    Liu S, Rao B J, Wang M R, Zhang P, Xiao F J, Gan X T, Zhao J L 2017 Opt. Express 25 7475

    [13]

    Schwartz T, Bartal G, Fishman S, Segev M 2007 Nature 446 52

    [14]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [15]

    Bahat-Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [16]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [17]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A 2014 Nat. Mater. 13 57

    [18]

    Rechtsman M C, Zeuner J M, Tnnermann A, Nolte S, Segev M, Szameit A 2013 Nat. Photon. 7 153

    [19]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [20]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Xu J, Ablowitz M, Efremidis N K, Chen Z 2015 Nat. Commun. 6 6272

    [21]

    Song D, Liu S, Paltoglou V, Gallardo D, Tang L, Zhao J, Xu J, Efremidis N K, Chen Z 2015 D Mater. 2 034007

    [22]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [23]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211299
    [3] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [4] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [5] 栗岩锋, 胡晓堃, 王爱民. 基于高折射率断环结构的全固光子带隙光纤的设计. 物理学报, 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [6] 张正仁, 隆正文, 袁玉群, 刁心峰. 对称型单负交替一维光子晶体的能带结构. 物理学报, 2010, 59(1): 587-591. doi: 10.7498/aps.59.587
    [7] 王沙, 杨志安. 二维周期光子晶格中的非线性Landau-Zener隧穿. 物理学报, 2009, 58(2): 729-733. doi: 10.7498/aps.58.729
    [8] 王沙, 杨志安. 光子晶格中光束演化的二能级模型及非线性Landau-Zener隧穿. 物理学报, 2009, 58(6): 3699-3706. doi: 10.7498/aps.58.3699
    [9] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性. 物理学报, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [10] 米 艳, 侯蓝田, 周桂耀, 王 康, 陈 超, 高 飞, 刘博文, 胡明列. 空芯光子晶体光纤光子带隙的测量与数值模拟. 物理学报, 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [11] 杨立森, 陈玉和, 陆改玲, 刘思敏. 光折变光子晶格中空间二次谐波的产生. 物理学报, 2007, 56(7): 3966-3971. doi: 10.7498/aps.56.3966
    [12] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层. 物理学报, 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [13] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [14] 顾建忠, 林水洋, 王 闯, 喻筱静, 孙晓玮. 基于补偿型微带谐振单元的一维光子带隙结构. 物理学报, 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [15] 项元江, 文双春, 唐康凇. 含单负介质层受阻全内反射结构的光子隧穿现象研究. 物理学报, 2006, 55(6): 2714-2719. doi: 10.7498/aps.55.2714
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [18] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用. 物理学报, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [19] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体. 物理学报, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构. 物理学报, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
计量
  • 文章访问数:  2822
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-08-08
  • 刊出日期:  2017-12-05

蜂巢光子晶格中光波的无衍射和反常折射

  • 1. 西北工业大学理学院, 陕西省光信息技术重点实验室, 西安 710072
  • 通信作者: 赵建林, jlzhao@nwpu.edu.cn
    基金项目: 国家自然科学基金(批准号:61675168,11634010)和国家自然科学基金委员会中国工程物理研究院联合基金(批准号:U1630125)资助的课题.

摘要: 空间频率模式的光子带隙反映了光波在周期性结构中的线性传输特性.以这种线性传输特性为基础,研究了蜂巢光子晶格中光波的无衍射和反常折射.通过详细分析带隙结构第一通带上的衍射与折射特性,得出了光波发生反常衍射和折射的入射条件.匹配不同的入射条件,数值模拟了光波的无衍射传输和反常折射现象.结果表明:将入射光束的波矢设置在蜂巢晶格布里渊区中正常、反常衍射区的交界处,可使高斯光束沿x轴、y轴方向的衍射得到有效抑制;以多光束干涉场作为入射光场,可对蜂巢晶格进行模式匹配,激发第二布里渊区的传输模式;进一步将模式匹配后入射光场的波矢设置在反常折射区,可实现光波的反常折射.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回