搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S-Ka频段电磁波在等离子体中传输特性的实验研究

马昊军 王国林 罗杰 刘丽萍 潘德贤 张军 邢英丽 唐飞

引用本文:
Citation:

S-Ka频段电磁波在等离子体中传输特性的实验研究

马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞

Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma

Ma Hao-Jun, Wang Guo-Lin, Luo Jie, Liu Li-Ping, Pan De-Xian, Zhang Jun, Xing Ying-Li, Tang Fei
PDF
导出引用
  • 在感应耦合等离子体风洞上开展了等离子体中电磁波传输特性实验研究,获得了不同频率电磁波在等离子体中的传输衰减.通过微波诊断技术,获得了等离子体射流的电子数密度和碰撞频率.通过矢量网络分析仪和标准增益天线组成的电磁波传输特性测试系统,获得了电磁波经过等离子体之后的衰减,研究了电子数密度范围7.010101.01013 cm-3、等离子体碰撞频率在109 Hz量级的等离子体对2.640 GHz不同频率电磁波传输特性的影响,分析了经典传输理论和薄层理论预测结果与实验结果的差异.该实验工作为等离子体中电磁波传输特性的理论研究和数值仿真提供了基础数据.
    When hypersonic vehicle flies in the atmosphere at a high altitude with a high speed, plasma sheath is generated around the vehicle, and thus attenuating the electromagnetic wave signals and even interrupting the communication. Therefore the control, guidance, and navigation of hypersonic vehicle can be affected seriously by the plasma sheath. It is necessary to study this problem in reasonable ground experiment. The inductively coupled plasma (ICP) wind tunnel is an ideal equipment for studying electromagnetic transmission characteristics in plasma because it can produce uncontaminated plasma and the electrode cannot be ablated in the process of plasma production. We carry out the experiment in ICP wind tunnel. A thin slice of plasma jet is generated by a rectangular nozzle with an outlet size of m 50 mm250 mm. Plasma jets with different parameters are obtained by adjusting the operating power and inlet flow of the wind tunnel. Four kinds of states are provided with the electron densities of 7.01010, 5.01011, 3.51012 and 1.01013/cm3, and the collision frequencies of 1.5109, 1.6109, 2.0109 and 9.0109 Hz, respectively. The amplitude attenuations and phase changes of the electromagnetic waves are measured with microwave diagnostics system consisting of a vector network analyzer and high gain antennas. And electron density and collision frequency of plasma are obtained according to the transmission characteristics of electromagnetic waves in plasma. The attenuations of the electromagnetic wave in plasmas of different states are measured via microwave transmission system which is composed of a vector network analyzer and pairs of horn antennas covering a frequency range of 2.6-40 GHz. The results show that both the amplitude attenuation and attenuation band increase with the increase of electron density. The classical theory and thin layer theory are used to simulate the transmission attenuation. The results are compared with the experimental ones. The results in this paper provide basic data for further theoretical and numerical study of electromagnetic wave transmission characteristics in plasma.
      通信作者: 马昊军, mahaojun82@163.ccom
    • 基金项目: 国家自然科学基金(批准号:11472002)资助的课题.
      Corresponding author: Ma Hao-Jun, mahaojun82@163.ccom
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472002).
    [1]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [2]

    Jones W L, Cross A E 1972 The Entry Plasma Sheath and its Effect on Space Vehicle Electromagnetic Systems (Washington D C: NASA, NASA SP-252) p109

    [3]

    Grantham W L 1970 NASA TN-D-6062, L-7107

    [4]

    Swift C T, Beck F B, Thomson J, Castellow S L J 1971 NASA Special Publication 252 137

    [5]

    Hodara H 1961 Proc. IRE 49 1825

    [6]

    Manning R M 2009 NASA TM-2009-216096, E-17149

    [7]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 1825

    [8]

    Starkey R 2003 34th AIAA Plasma Dynamics and Lasers Conference Orlando, Florida, June 23-26, 2003 AIAA 2003-4167

    [9]

    Usui H, Matsumoto H, Yamashita F, Yamane M, Takenaka S 1998 Spacecraft Charging Tech. 1 107

    [10]

    Rosen G 1962 Phys. Fluids 5 737

    [11]

    Russo F P, Schroeder L C 1968 NASA TM X-1521

    [12]

    Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R, Shome P 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, August 20-23, 2007 AIAA 2007-6633

    [13]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [14]

    Kim M, Keidar M, Boyd I D 2009 47th AIAA Aerospace Sciences Meeting Orlando, Florida, Jan., 2009 AIAA 2009-1232

    [15]

    Ma P, Zeng X J, Shi A H, Bu S Q, Yu Z F 2010 J. Exper. Fluid Mech. 24 51 (in Chinese)[马平, 曾学军, 石安华, 部邵清, 于哲峰 2010 实验流体力学 24 51]

    [16]

    Yu Z F, Ma P, Zhang Z C, Liang S C, Shi A H, Huang J 2013 J. Exp. Fluid Mech. 27 60 (in Chinese)[于哲峰, 马平, 张志成, 梁世昌, 石安华, 黄洁 2013 实验流体力学 27 60]

    [17]

    Yu Z F, Liu J Q, Ren A M, Zhang S J, Ma P, Shi A H 2011 J. Astronaut. 32 1564 (in Chinese)[于哲峰, 刘佳琪, 任爱民, 张生俊, 马平, 石安华 2011 宇航学报 32 1564]

    [18]

    Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese)[郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 物理学报 61 155203]

    [19]

    Xing X J, Zhao Q, Zheng L, Tang J M, Chen Y X, Liu S Z 2013 High Power Laser Part. Beam 25 1965 (in Chinese)[邢晓俊, 赵青, 郑灵, 唐剑明, 陈禹旭, 刘述章 2013 强激光与粒子束 25 1965]

    [20]

    Ma C G, Zhao Q, Luo X G, He G, Zheng L, Liu J W 2011 Acta Phys. Sin. 60 055201 (in Chinese)[马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫 2011 物理学报 60 055201]

    [21]

    Xie K, Li X P, Yang M, Shi L, Liu D L 2013 J. Astronaut. 34 1166 (in Chinese)[谢楷, 李小平, 杨敏, 石磊, 刘东林 2013 宇航学报 34 1166]

    [22]

    Gao P, Li X P, Xie K, Liu Y M, Shi L 2015 Acta Aeronaut. Astronaut. Sin. 36 633 (in Chinese)[高平, 李小平, 谢楷, 刘彦明, 石磊 2015 航空学报 36 633]

    [23]

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201 (in Chinese)[杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 物理学报 63 085201]

    [24]

    ITO T, Ishida K, Mizuno M, Sumi T, Matsuzaki T, Nagai J, Murata H 2003 12th AIAA International Space Planes and Hypersonic Systems and Technologies Norfolk, Virginia, 15-19 December, 2003 AIAA 2003-7023

    [25]

    Luo S, Scharer J E, Thiyagarajan M, Mark D 2006 , IEEE Trans. Plasma Sci. 34 2637

    [26]

    Poeverlein H 1958 J. Atmosphere and Terrestrial Phys. 12 126

    [27]

    Rudderow W H 1975 A Study of Electromagnetic Wave Interactions with Air Plasmas (Texas: Defense Technical Information Center) ADA-016449

    [28]

    Liu M H, Hu X W, Jiang Z H, Zhang S, Lan C 2007 J. Appl. Phys. 101 1661

  • [1]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [2]

    Jones W L, Cross A E 1972 The Entry Plasma Sheath and its Effect on Space Vehicle Electromagnetic Systems (Washington D C: NASA, NASA SP-252) p109

    [3]

    Grantham W L 1970 NASA TN-D-6062, L-7107

    [4]

    Swift C T, Beck F B, Thomson J, Castellow S L J 1971 NASA Special Publication 252 137

    [5]

    Hodara H 1961 Proc. IRE 49 1825

    [6]

    Manning R M 2009 NASA TM-2009-216096, E-17149

    [7]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 1825

    [8]

    Starkey R 2003 34th AIAA Plasma Dynamics and Lasers Conference Orlando, Florida, June 23-26, 2003 AIAA 2003-4167

    [9]

    Usui H, Matsumoto H, Yamashita F, Yamane M, Takenaka S 1998 Spacecraft Charging Tech. 1 107

    [10]

    Rosen G 1962 Phys. Fluids 5 737

    [11]

    Russo F P, Schroeder L C 1968 NASA TM X-1521

    [12]

    Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R, Shome P 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, August 20-23, 2007 AIAA 2007-6633

    [13]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445

    [14]

    Kim M, Keidar M, Boyd I D 2009 47th AIAA Aerospace Sciences Meeting Orlando, Florida, Jan., 2009 AIAA 2009-1232

    [15]

    Ma P, Zeng X J, Shi A H, Bu S Q, Yu Z F 2010 J. Exper. Fluid Mech. 24 51 (in Chinese)[马平, 曾学军, 石安华, 部邵清, 于哲峰 2010 实验流体力学 24 51]

    [16]

    Yu Z F, Ma P, Zhang Z C, Liang S C, Shi A H, Huang J 2013 J. Exp. Fluid Mech. 27 60 (in Chinese)[于哲峰, 马平, 张志成, 梁世昌, 石安华, 黄洁 2013 实验流体力学 27 60]

    [17]

    Yu Z F, Liu J Q, Ren A M, Zhang S J, Ma P, Shi A H 2011 J. Astronaut. 32 1564 (in Chinese)[于哲峰, 刘佳琪, 任爱民, 张生俊, 马平, 石安华 2011 宇航学报 32 1564]

    [18]

    Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese)[郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 物理学报 61 155203]

    [19]

    Xing X J, Zhao Q, Zheng L, Tang J M, Chen Y X, Liu S Z 2013 High Power Laser Part. Beam 25 1965 (in Chinese)[邢晓俊, 赵青, 郑灵, 唐剑明, 陈禹旭, 刘述章 2013 强激光与粒子束 25 1965]

    [20]

    Ma C G, Zhao Q, Luo X G, He G, Zheng L, Liu J W 2011 Acta Phys. Sin. 60 055201 (in Chinese)[马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫 2011 物理学报 60 055201]

    [21]

    Xie K, Li X P, Yang M, Shi L, Liu D L 2013 J. Astronaut. 34 1166 (in Chinese)[谢楷, 李小平, 杨敏, 石磊, 刘东林 2013 宇航学报 34 1166]

    [22]

    Gao P, Li X P, Xie K, Liu Y M, Shi L 2015 Acta Aeronaut. Astronaut. Sin. 36 633 (in Chinese)[高平, 李小平, 谢楷, 刘彦明, 石磊 2015 航空学报 36 633]

    [23]

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201 (in Chinese)[杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 物理学报 63 085201]

    [24]

    ITO T, Ishida K, Mizuno M, Sumi T, Matsuzaki T, Nagai J, Murata H 2003 12th AIAA International Space Planes and Hypersonic Systems and Technologies Norfolk, Virginia, 15-19 December, 2003 AIAA 2003-7023

    [25]

    Luo S, Scharer J E, Thiyagarajan M, Mark D 2006 , IEEE Trans. Plasma Sci. 34 2637

    [26]

    Poeverlein H 1958 J. Atmosphere and Terrestrial Phys. 12 126

    [27]

    Rudderow W H 1975 A Study of Electromagnetic Wave Interactions with Air Plasmas (Texas: Defense Technical Information Center) ADA-016449

    [28]

    Liu M H, Hu X W, Jiang Z H, Zhang S, Lan C 2007 J. Appl. Phys. 101 1661

  • [1] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [2] 孟令辉, 任洪波, 刘建晓. 高温等离子体中太赫兹波的传输特性. 物理学报, 2018, 67(17): 174101. doi: 10.7498/aps.67.20180647
    [3] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [4] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [5] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究. 物理学报, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [6] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [7] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究. 物理学报, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [8] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究. 物理学报, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [9] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究. 物理学报, 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [10] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [11] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用. 物理学报, 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [12] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究. 物理学报, 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [13] 朱 冰, 杨 涓, 黄雪刚, 毛根旺, 刘俊平. 真空环境中等离子体喷流对反射电磁波衰减的实验研究. 物理学报, 2006, 55(5): 2352-2356. doi: 10.7498/aps.55.2352
    [14] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析. 物理学报, 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [15] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究. 物理学报, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [16] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解. 物理学报, 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [17] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减. 物理学报, 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [18] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [19] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [20] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性. 物理学报, 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
计量
  • 文章访问数:  4061
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-08-21
  • 刊出日期:  2019-01-20

S-Ka频段电磁波在等离子体中传输特性的实验研究

  • 1. 中国空气动力研究与发展中心超高速空气动力研究所, 绵阳 621000
  • 通信作者: 马昊军, mahaojun82@163.ccom
    基金项目: 国家自然科学基金(批准号:11472002)资助的课题.

摘要: 在感应耦合等离子体风洞上开展了等离子体中电磁波传输特性实验研究,获得了不同频率电磁波在等离子体中的传输衰减.通过微波诊断技术,获得了等离子体射流的电子数密度和碰撞频率.通过矢量网络分析仪和标准增益天线组成的电磁波传输特性测试系统,获得了电磁波经过等离子体之后的衰减,研究了电子数密度范围7.010101.01013 cm-3、等离子体碰撞频率在109 Hz量级的等离子体对2.640 GHz不同频率电磁波传输特性的影响,分析了经典传输理论和薄层理论预测结果与实验结果的差异.该实验工作为等离子体中电磁波传输特性的理论研究和数值仿真提供了基础数据.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回