搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米多孔银力学性能表征分子动力学模拟

李杰杰 鲁斌斌 线跃辉 胡国明 夏热

引用本文:
Citation:

纳米多孔银力学性能表征分子动力学模拟

李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热

Characterization of nanoporous silver mechanical properties by molecular dynamics simulation

Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re
PDF
导出引用
  • 纳米多孔金属拥有优异的物理、化学性能,在众多领域中极具应用前景.相关力学性能的认知是实现其功能化应用的重要基础之一.基于分子动力学模拟,以三种拓扑结构(立方体结构、金刚石结构、螺旋体结构)的纳米多孔银为对象,研究了单轴拉伸下的力学响应,探讨了拓扑结构和相对密度与其力学性能的内在联系.仿真结果表明,纳米多孔银的极限强度和杨氏模量随相对密度增大而增大的同时,还紧密地依赖于拓扑结构.其中,金刚石结构与螺旋体结构的模量随相对密度的变化趋势较为相近,而螺旋体结构中螺旋形式的孔棱在受力拉直的过程中抵抗变形,表现出相对较好的塑性.立方体结构中,孔棱分布形式单一,抵抗变形的能力较弱,模量值较低.同一相对密度下,金刚石结构的强度最大,立方体结构次之,螺旋体结构最小.金刚石结构中,交错的孔棱间形成三角骨架结构,具有一定的稳定性,表现出相对较高的强度.
    Nanoporous metals (NPMs) have great potential applications in many technological areas, such as catalysis, sensing, actuation, and fuel cells, because of their unique physical and chemical properties. The cognition of related mechanical properties is one of the important bases for achieving functionalized applications. A series of large-scale molecular dynamics (MD) simulations is performed to study the mechanical properties of nanoporous sliver (NPS) under uniaxial tension. Three different topology architectures of NPS, including cube, gyroid and diamond structures, are constructed and investigated. The effects of topology architecture and relative density on the mechanical properties are discussed. The LAMMPS is used to perform MD simulations and the embedded atom method potential is utilized to describe the interatomic interactions. The applied strain rate is 109 s-1 and the applied strain increment is 0.001 in each loading step. The results show that the plastic properties of NPS mainly depend on those of ligaments and the breakage of NPS mainly occurs in ligament areas. Meanwhile, the gyroid structure has better plasticity than other structures, due to the existence of ligament in spiral form. For one structure, the ultimate strength and the Young's modulus increase with the increase of relative density. Analysis shows that the basic mechanical properties of NPS largely depend on the relative density, similar to those of porous materials. The modulus as a function of relative density displays a power-law relation and the exponents depend on the topology architectures. The exponents of three structures are in a range between 1 and 2, showing that the bending of ligament and the tension of ligament are both included during the deformation. The variation trends of modulus of diamond and gyroid structures are similar to the variation of relative density, whose possible reason is that diamond and gyroid structures are both constructed by triply periodic minimal surfaces. With the same relative density, the modulus of diamond structure is in good agreement with that of gyroid structure, and the modulus of cube structure is the minimum. The strength shows a linear relation with the relative density, indicating that the yielding behavior of NPS is dominated by the axial yielding of ligament. When three types of NPSs have the same relative density, the strength of diamond structure is the maximum, cube structure second, and gyroid structure is the minimum. In diamond structure NPS, the structure of triangular framework is formed between ligaments, resulting in a relatively higher strength. The present study will provide an atomistic insight into the understanding of deformation mechanisms of nanoporous metals, and it will provide data support for designing NPMs with optimal mechanical properties by controlling geometric structure.
      通信作者: 夏热, xiare@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11102140,51575404)资助的课题.
      Corresponding author: Xia Re, xiare@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11102140, 51575404).
    [1]

    Zhai X, Ding Y 2017 Acta Phys. -Chim. Sin. 33 1366 (in Chinese) [翟萧,丁轶 2017 物理化学学报 33 1366]

    [2]

    Wittstock A, Zielasek V, Biener J, Friend C M, Bäumer M 2010 Science 327 319

    [3]

    Zhang L, Chang H, Hirata A, Wu H, Xue Q K, Chen M 2013 ACS Nano 7 4595

    [4]

    Detsi E, Onck P R, de Hosson J T M 2013 Appl. Phys. Lett. 103 193101

    [5]

    Ding Y, Zhang Z 2016 Nanoporous Metals for Advanced Energy Technologies (Berlin: Springer Cham) pp83-131

    [6]

    Ye X L, Liu F, Jin H J 2014 Acta. Metall. Sin. 50 252 (in Chinese) [叶兴龙, 刘枫, 金海军 2014 金属学报 50 252]

    [7]

    Jin H J, Wang X L, Parida S, Wang K, Seo M, Weissmller J 2010 Nano Lett. 10 187

    [8]

    Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.) (Cambridge: Cambridge University Press)

    [9]

    Liu P S 2010 Acta Phys. Sin. 59 8801 (in Chinese) [刘培生 2010 物理学报 59 8801]

    [10]

    Liu P S 2010 Acta Phys. Sin. 59 4849 (in Chinese) [刘培生 2010 物理学报 59 4849]

    [11]

    Diwu M J, Hu X M 2015 Acta Phys. Sin. 64 170201 (in Chinese) [第伍旻杰,胡晓棉 2015 物理学报 64 170201]

    [12]

    Jin H J, Weissmller J 2011 Science 332 1179

    [13]

    Liu L Z, Ye X L, Jin H J 2016 Acta Mater. 118 77

    [14]

    Zabihzadeh S, van Petegem S, Holler M, Diaz A, Duarte L I, van Swygenhoven H 2017 Acta Mater. 131 467

    [15]

    Volkert C A, Lilleodden E T, Kramer D, Weissmller J 2006 Appl. Phys. Lett. 89 061920

    [16]

    Mangipudi K R, Epler E, Volkert C A 2016 Acta Mater. 119 115

    [17]

    Feng X Q, Xia R, Li X, Li, B 2009 Appl. Phys. Lett. 94 011916

    [18]

    Huber N, Viswanath R N, Mameka N, Markmann, J, Weißmller J 2014 Acta Mater. 67 252

    [19]

    Pia G, Brun M, Aymerich F, Delogu F 2017 J. Mater. Sci. 52 1106

    [20]

    Sun X Y, Xu G K, Li X, Feng X Q, Gao H 2013 J. Appl. Phys. 113 023505

    [21]

    Li X, Gao H 2016 Nat. Mater. 15 373

    [22]

    Abueidda D W, Al-Rub R K A, Dalaq A S, Lee D W, Khan K A, Jasiuk I 2016 Mech. Mater. 95 102

    [23]

    Yoo D J 2011 Int. J. Precis. Eng. Man. 12 61

    [24]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [25]

    Pavia F, Curtin W A 2015 Model. Simul. Mater. Sc. 23 055002

    [26]

    Yuan F, Huang L 2012 J. Non-Cryst. Solids 358 3481

    [27]

    Vu-Bac N, Lahmer T, Keitel L, Zhao J, Zhuang X, Rabczuk T 2014 Mech. Mater. 68 70

    [28]

    Luo J, Shi Y 2015 Acta Mater. 82 483

    [29]

    Shen X, Lin X, Jia J, Wang Z, Li Z, Kim J K 2014 Carbon 80 235

    [30]

    Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356

    [31]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012

    [32]

    Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279

    [33]

    Smith D R, Fickett F R 1995 J. Res. Natl. Inst. Stand. Technol. 100 119

  • [1]

    Zhai X, Ding Y 2017 Acta Phys. -Chim. Sin. 33 1366 (in Chinese) [翟萧,丁轶 2017 物理化学学报 33 1366]

    [2]

    Wittstock A, Zielasek V, Biener J, Friend C M, Bäumer M 2010 Science 327 319

    [3]

    Zhang L, Chang H, Hirata A, Wu H, Xue Q K, Chen M 2013 ACS Nano 7 4595

    [4]

    Detsi E, Onck P R, de Hosson J T M 2013 Appl. Phys. Lett. 103 193101

    [5]

    Ding Y, Zhang Z 2016 Nanoporous Metals for Advanced Energy Technologies (Berlin: Springer Cham) pp83-131

    [6]

    Ye X L, Liu F, Jin H J 2014 Acta. Metall. Sin. 50 252 (in Chinese) [叶兴龙, 刘枫, 金海军 2014 金属学报 50 252]

    [7]

    Jin H J, Wang X L, Parida S, Wang K, Seo M, Weissmller J 2010 Nano Lett. 10 187

    [8]

    Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.) (Cambridge: Cambridge University Press)

    [9]

    Liu P S 2010 Acta Phys. Sin. 59 8801 (in Chinese) [刘培生 2010 物理学报 59 8801]

    [10]

    Liu P S 2010 Acta Phys. Sin. 59 4849 (in Chinese) [刘培生 2010 物理学报 59 4849]

    [11]

    Diwu M J, Hu X M 2015 Acta Phys. Sin. 64 170201 (in Chinese) [第伍旻杰,胡晓棉 2015 物理学报 64 170201]

    [12]

    Jin H J, Weissmller J 2011 Science 332 1179

    [13]

    Liu L Z, Ye X L, Jin H J 2016 Acta Mater. 118 77

    [14]

    Zabihzadeh S, van Petegem S, Holler M, Diaz A, Duarte L I, van Swygenhoven H 2017 Acta Mater. 131 467

    [15]

    Volkert C A, Lilleodden E T, Kramer D, Weissmller J 2006 Appl. Phys. Lett. 89 061920

    [16]

    Mangipudi K R, Epler E, Volkert C A 2016 Acta Mater. 119 115

    [17]

    Feng X Q, Xia R, Li X, Li, B 2009 Appl. Phys. Lett. 94 011916

    [18]

    Huber N, Viswanath R N, Mameka N, Markmann, J, Weißmller J 2014 Acta Mater. 67 252

    [19]

    Pia G, Brun M, Aymerich F, Delogu F 2017 J. Mater. Sci. 52 1106

    [20]

    Sun X Y, Xu G K, Li X, Feng X Q, Gao H 2013 J. Appl. Phys. 113 023505

    [21]

    Li X, Gao H 2016 Nat. Mater. 15 373

    [22]

    Abueidda D W, Al-Rub R K A, Dalaq A S, Lee D W, Khan K A, Jasiuk I 2016 Mech. Mater. 95 102

    [23]

    Yoo D J 2011 Int. J. Precis. Eng. Man. 12 61

    [24]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [25]

    Pavia F, Curtin W A 2015 Model. Simul. Mater. Sc. 23 055002

    [26]

    Yuan F, Huang L 2012 J. Non-Cryst. Solids 358 3481

    [27]

    Vu-Bac N, Lahmer T, Keitel L, Zhao J, Zhuang X, Rabczuk T 2014 Mech. Mater. 68 70

    [28]

    Luo J, Shi Y 2015 Acta Mater. 82 483

    [29]

    Shen X, Lin X, Jia J, Wang Z, Li Z, Kim J K 2014 Carbon 80 235

    [30]

    Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356

    [31]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012

    [32]

    Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279

    [33]

    Smith D R, Fickett F R 1995 J. Res. Natl. Inst. Stand. Technol. 100 119

  • [1] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [2] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [3] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [4] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [5] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [6] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [8] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [10] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [11] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [12] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [13] 陈卫东, 徐华, 郭琦. 国际石油价格复杂网络的动力学拓扑性质. 物理学报, 2010, 59(7): 4514-4523. doi: 10.7498/aps.59.4514
    [14] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [15] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响. 物理学报, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [16] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [17] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [18] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [19] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [20] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
计量
  • 文章访问数:  3995
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2017-12-13
  • 刊出日期:  2018-03-05

纳米多孔银力学性能表征分子动力学模拟

  • 1. 武汉大学动力与机械学院, 水力机械过渡过程教育部重点实验室, 武汉 430072;
  • 2. 武汉大学动力与机械学院, 水射流理论与新技术湖北省重点实验室, 武汉 430072
  • 通信作者: 夏热, xiare@whu.edu.cn
    基金项目: 国家自然科学基金(批准号:11102140,51575404)资助的课题.

摘要: 纳米多孔金属拥有优异的物理、化学性能,在众多领域中极具应用前景.相关力学性能的认知是实现其功能化应用的重要基础之一.基于分子动力学模拟,以三种拓扑结构(立方体结构、金刚石结构、螺旋体结构)的纳米多孔银为对象,研究了单轴拉伸下的力学响应,探讨了拓扑结构和相对密度与其力学性能的内在联系.仿真结果表明,纳米多孔银的极限强度和杨氏模量随相对密度增大而增大的同时,还紧密地依赖于拓扑结构.其中,金刚石结构与螺旋体结构的模量随相对密度的变化趋势较为相近,而螺旋体结构中螺旋形式的孔棱在受力拉直的过程中抵抗变形,表现出相对较好的塑性.立方体结构中,孔棱分布形式单一,抵抗变形的能力较弱,模量值较低.同一相对密度下,金刚石结构的强度最大,立方体结构次之,螺旋体结构最小.金刚石结构中,交错的孔棱间形成三角骨架结构,具有一定的稳定性,表现出相对较高的强度.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回