搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳电池单二极管模型中的参数提取方法

肖文波 刘伟庆 吴华明 张华明

引用本文:
Citation:

太阳电池单二极管模型中的参数提取方法

肖文波, 刘伟庆, 吴华明, 张华明

Review of Parameter extraction methods for single-diode model of solar cell

Xiao Wen-Bo, Liu Wei-Qing, Wu Hua-Ming, Zhang Hua-Ming
PDF
导出引用
  • 近年来,太阳电池参数提取方法获得了广泛关注.原因在于匹配的电池参数,可以有效减少内外因素对光伏阵列发电效率的影响.本文以太阳电池单二极管模型为讨论对象,对其五个参数的提取方法进行了详细介绍;对目前典型的四类太阳电池参数提取方法(即解析提取参数方法,借助朗伯W函数函数提取参数方法,构建或利用特殊函数提取参数方法,利用智能算法提取参数方法)进行归纳与总结.阐述了这些方法的主要理论与实现途径,更重要的是对它们的优缺点进行了探讨.最后,对参数提取未来的研究动态进行了展望,以期对参数提取方法提供一些思路,为国内同行开展相关研究提供一些帮助.
    In recent years, the parameter extraction methods of solar cell have attracted a lot of research attention. The reason is that the matching solar cell parameters can effectively reduce the influences of internal and external factors on photovoltaic efficiencies. In this paper, the five-parameter extraction methods of solar cell single-diode model are discussed in detail. The five parameters are the photocurrent, the reverse diode saturation current, the ideality factor of diode, the series resistance, and the shunt resistance. In fact, the existing research methods are classified as four categories, namely, analytically extracting parameter methods, extracting parameter methods with the help of Lambert W function, constructing or using special functions to extract parameter methods, and using intelligent algorithm to extract parameter methods. In this article, we not only elaborate their main theories and approaches, but also discuss their advantages and disadvantages. The main conclusion is that the analytical method for the extraction of solar cell model parameters requires some assumptions. Therefore, this method is fast but less accurate due to various approximations. In addition, the parameter extraction using the analytical method needs a thorough calculation, and deducing the actual values of (dI/dV)|V=Voc and (dI/dV)|I=Isc and peak power point is also challenging. When the five parameters of solar cell are calculated using the Lambert W-function method, the results show that the extraction process is easier when using the consecrated software such as MATLAB, but the larger computational time is needed. Generally, the Lambert-W function provides the exact explicit expression for parameter extraction. As a result, the accuracy of approximate solution using Lambert-W function is much higher than that of the above method. It is obvious that the accuracy of using special functions to extract cell parameters is limited by those function characteristics. Of course, those special functions, such as Green's function, seem to be complex approaches. The accuracy of the extracting cell parameters by using intelligent algorithm strongly depends on the type of fitting algorithm, the fitting criterion, objective function and the starting values of the parameters. Finally, based on the conducted review, the future research trend of parameter extraction is also predicted
      通信作者: 肖文波, xiaowenbo1570@163.com
    • 基金项目: 国家自然科学基金(批准号:11264031)、江西省青年科学基金重大项目(批准号:20143ACB21011)、航空科学基金(批准号:2017ZC56003,20162856004)、无损检测技术教育部重点实验室基金(批准号:ZD201629004)、江西省自然科学基金(批准号:20151BAB207054)和南昌航空大学研究生创新专项基金(批准号:YC2017051)资助的课题.
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264031), Jiangxi Province Science Major Program for Youths, China (Grant No. 20143ACB21011), Aeronautical Science Foundation of China (Grant Nos. 2017ZC56003, 20162856004), the Open Fund of the Key Laboratory of Nondestructive Testing of Ministry of Education, China (Grant No. ZD201629004), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207054), and the Special Fund of Nanchang Hangkong University Graduate, China (Grant No. YC2017051).
    [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 258 692

    [2]

    Goetzberger A, Luther J, Willeke G 2002 Sol. Energ. Mater. Sol. Cells 74 1

    [3]

    Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press) pp1-39

    [4]

    Wenham S R, Green M A, Watt M E, Corkish R, Sproul A 2011 Applied Photovaltaics (3rd Ed.) (New York:Earthscan) pp69-84

    [5]

    Askarzadeh A, Rezazadeh A 2013 Appl. Energ. 102 943

    [6]

    Kim W, Choi W 2010 Sol. Energy 84 1008

    [7]

    Caracciolo F, Dallago E, Finarelli D, Liberale A, Merhej P 2012 IEEE J. Photovolt. 2 173

    [8]

    Jordehi A 2016 Renew. Sust. Energ. Rev. 61 354

    [9]

    Li H I L, Ye Z, Ye J, Yang D, Du H 2015 Renew. Energ. 76 135

    [10]

    Gow J A, Manning C D 1996 6th International Conference on Power Electronics and Variable Speed Drives Nottingham, United Kingdom, September 23-25, 1996 p69

    [11]

    Nishioka K, Sakitani N, Uraoka Y, Fuyuki T 2007 Sol. Energ. Mater. Sol. Cells 91 1222

    [12]

    Bana S, Saini R 2016 Energy Reports 2 171

    [13]

    Khanna V, Das B, Bisht D, Singh P 2015 Renew. Energ. 78 105

    [14]

    Shockley W 1949 Bell Labs Tech. J. 28 435

    [15]

    Kammer D, Ludington M 1977 Am. J. Phys. 45 602

    [16]

    Pan B, Weng J, Chen S, Huang Y, Dai S 2014 J. Phys. D:Appl. Phys. 47 475503

    [17]

    Soto W, Klein S, Beckman W 2006 Sol. Energy 80 78

    [18]

    Ortiz-Conde A, Garcia Sanchez F J, Muci J 2006 Sol. Energ. Mater. Sol. Cells 90 352

    [19]

    Amit J, Sharma S, Kapoor A 2006 Sol. Energ. Mater. Sol. Cells 90 25

    [20]

    Villalva M, Gazoli J, Filho E 2009 IEEE Trans. Power Electr. 94 1198

    [21]

    Gottschalg R, Rommel M, Infield D G, Kearney M J 1999 Meas. Sci. Technol. 10 796

    [22]

    Chegaar M, Ouennoughi Z, Guechi F 2004 Vacuum 75 367

    [23]

    Haouari-Merbah M, Belhamel M, Tobias I, Ruiz J M 2005 Sol. Energ. Mater. Sol. Cells 87 225

    [24]

    Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123

    [25]

    Siddiqui M, Abido M 2013 Appl. Soft Comput. 13 4608

    [26]

    Ishaque K, Salam Z 2011 Sol. Energy 85 2349

    [27]

    Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N 2014 Sol. Energy 110 781

    [28]

    Chan D, Phillips J, Phang J 1986 Solid State Electron. 29 329

    [29]

    Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 455

    [30]

    Batzelis E, Papathanassiou A 2016 IEEE Trans. Sustain. Energ. 7 504

    [31]

    Chenni R, Makhlouf M, Kerbache T, Bouzid A 2007 Energy 32 1724

    [32]

    Lun S, Du C, Yang G, Wang S, Guo T 2013 Sol. Energy 92 147

    [33]

    Ouennoughi Z, Chegaar M 1999 Solid State Electron. 43 1985

    [34]

    Sze S M, Kwok K N 2007 Physics of Semiconductor Devices (3rd Ed.) (Hoboken:John Wiley Sons) pp663-743

    [35]

    Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Solar Energy 4 1

    [36]

    Chegaar M, Ouennoughi Z, Hoffmann A 2001 Solid State Electron. 45 293

    [37]

    Rasool F, Drieberg M, Badruddin N, Singh B S M 2017 Sol. Energy 153 519

    [38]

    Chouder A, Silvestre S, Sadaoui N, Rahmani L 2012 Simul. Model. Pract. Th. 20 46

    [39]

    Rahman S, Varma R, Vanderheide T 2014 IET Renew. Power Gen. 8 217

    [40]

    Dolara, A, Leva S, Manzolini G 2015 Sol. Energy 119 83

    [41]

    Jain A, Kapoor A 2004 Sol. Energ. Mater. Sol. Cells 81 269

    [42]

    Zhang C, Zhang J, Hao Y, Lin Z, Zhu C 2011 J. Appl. Phys. 110 199

    [43]

    Khan F, Singh S, Husain M 2010 Sol. Energ. Mat. Sol. C. 94 1473

    [44]

    Ghani F, Rosengarten G, Duke M, Carson J 2014 Renew. Energ. 72 105

    [45]

    Carrero C, Rodriguez J, Ramirez D, Platero C 2010 Renew. Energ. 35 1103

    [46]

    Xiao W B, Liu M M, Yan C 2017 J. Nanoelectron. Optoelec. 12 189

    [47]

    Chen Y, Wang X, Li D, Hong R, Shen H 2011 Appl. Energ. 88 2239

    [48]

    Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131

    [49]

    Saleem H, Karmalkar S 2009 IEEE Electr. Device Lett. 30 349

    [50]

    Karmalkar S, Saleem H 2011 Sol. Energ. Mater. Sol. Cells 95 1076

    [51]

    Singh N, Jain A, Kapoor A 2009 Sol. Energ. Mater. Sol. Cells 93 1423

    [52]

    Perovich S M, Simic S K, Tosic D V, Bauk S I 2007 Appl. Math. Lett. 20 493

    [53]

    Charles J P, Abdelkrim M, Muoy Y H, Mialhe P 1981 Solar Cells 4 169

    [54]

    Jain A, Kapoor A 2005 Sol. Energ. Mater. Sol. Cells 85 391

    [55]

    Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S 2015 J, Renew. Sustain. Ener. 7 950

    [56]

    Mallick S P, Dash D P, Mallik S, Roshan R, Mahata S 2017 Sol. Energy 153 360

    [57]

    Akbaba M, Aiattawi M 1995 Sol. Energ. Mater. Sol. Cells 37 123

    [58]

    Cavassilas N, Michelini F, Bescond M 2014 J. Renew. Sustain. Ener. 6 65

    [59]

    Ma T, Yang H, Lu L 2014 Sol. Energy 100 31

    [60]

    Bellia H, Youcef R, Fatima M 2014 NRIAG J. A. G. 3 53

    [61]

    Bonkoungou D, Koalaga Z, Njomo D, Zougmore F 2015 Int. J. Current Engineer. Technol. 5 3735

    [62]

    Jervase J, Bourdoucen H, Al-Lawati A 2001 Meas. Sci. Technol. 12 1922

    [63]

    Sellai A, Ouennoughi Z 2005 Int. J. Mod. Phys. C 16 1043

    [64]

    Patel Sanjaykumar J, Panchal Ashish K, Kheraj V 2013 J. Nano-Electro. Phys. 5 02008

    [65]

    Sellami A, Zagrouba M, Bouacha M, Bessas B 2007 Meas. Sci. Technol. 18 1472

    [66]

    Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860

    [67]

    Gaing Z L 2003 IEEE Trans. Power Syst. 18 1187

    [68]

    Macabebe E, Sheppard C, Dyk E 2011 Sol. Energy 85 12

    [69]

    Munji M K, Okullo W, Dyk E, Vorster F 2010 Sol. Energ. Mater. Sol. Cells 94 2129

    [70]

    Ye M, Wang X, Xu Y 2009 J. Appl. Phys. 105 1948

    [71]

    Alhajri M, El-Naggar K, Al-Rashidi M, Al-Othman A 2012 Renew. Energ. 44 238

    [72]

    Rao R V, Savsani V J, Vakharia D P 2011 Comput. Aided Design 43 303

    [73]

    Patel S, Panchal A, Kheraj V 2014 Appl. Energ. 119 384

    [74]

    Singh K, Kho K, Rita S 2014 Int. J. Computat. Sci. Appl. 4 101

    [75]

    Laudani A, Lozito G, Fulginei F, Salvini A 2015 Int. J. Photoenergy 205 1

    [76]

    Laudani A, Fulginei F, Salvini A, Lozito G, Coco S 2014 Int. J. Photoenergy 204 1

    [77]

    Rajasekar N, Kumar N, Venugopalan R 2013 Sol. Energy 97 255

    [78]

    Guo L, Meng Z, Sun Y, Wang L 2016 Energ. Convers. Manage. 108 520

    [79]

    Ma J, Bi Z, Ting T, Hao S, Hao W 2016 Sol. Energy 132 606

    [80]

    Humada A, Hojabri M, Mekhilef S, Hamada H 2016 Renew. Sust. Energ. Rev. 56 494

    [81]

    Boutana N, Mellit A, Lughi V, Pavan A 2017 Energy 122 128

    [82]

    Bana S, Saini R 2017 Renew. Energ. 101 1299

  • [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 258 692

    [2]

    Goetzberger A, Luther J, Willeke G 2002 Sol. Energ. Mater. Sol. Cells 74 1

    [3]

    Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press) pp1-39

    [4]

    Wenham S R, Green M A, Watt M E, Corkish R, Sproul A 2011 Applied Photovaltaics (3rd Ed.) (New York:Earthscan) pp69-84

    [5]

    Askarzadeh A, Rezazadeh A 2013 Appl. Energ. 102 943

    [6]

    Kim W, Choi W 2010 Sol. Energy 84 1008

    [7]

    Caracciolo F, Dallago E, Finarelli D, Liberale A, Merhej P 2012 IEEE J. Photovolt. 2 173

    [8]

    Jordehi A 2016 Renew. Sust. Energ. Rev. 61 354

    [9]

    Li H I L, Ye Z, Ye J, Yang D, Du H 2015 Renew. Energ. 76 135

    [10]

    Gow J A, Manning C D 1996 6th International Conference on Power Electronics and Variable Speed Drives Nottingham, United Kingdom, September 23-25, 1996 p69

    [11]

    Nishioka K, Sakitani N, Uraoka Y, Fuyuki T 2007 Sol. Energ. Mater. Sol. Cells 91 1222

    [12]

    Bana S, Saini R 2016 Energy Reports 2 171

    [13]

    Khanna V, Das B, Bisht D, Singh P 2015 Renew. Energ. 78 105

    [14]

    Shockley W 1949 Bell Labs Tech. J. 28 435

    [15]

    Kammer D, Ludington M 1977 Am. J. Phys. 45 602

    [16]

    Pan B, Weng J, Chen S, Huang Y, Dai S 2014 J. Phys. D:Appl. Phys. 47 475503

    [17]

    Soto W, Klein S, Beckman W 2006 Sol. Energy 80 78

    [18]

    Ortiz-Conde A, Garcia Sanchez F J, Muci J 2006 Sol. Energ. Mater. Sol. Cells 90 352

    [19]

    Amit J, Sharma S, Kapoor A 2006 Sol. Energ. Mater. Sol. Cells 90 25

    [20]

    Villalva M, Gazoli J, Filho E 2009 IEEE Trans. Power Electr. 94 1198

    [21]

    Gottschalg R, Rommel M, Infield D G, Kearney M J 1999 Meas. Sci. Technol. 10 796

    [22]

    Chegaar M, Ouennoughi Z, Guechi F 2004 Vacuum 75 367

    [23]

    Haouari-Merbah M, Belhamel M, Tobias I, Ruiz J M 2005 Sol. Energ. Mater. Sol. Cells 87 225

    [24]

    Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123

    [25]

    Siddiqui M, Abido M 2013 Appl. Soft Comput. 13 4608

    [26]

    Ishaque K, Salam Z 2011 Sol. Energy 85 2349

    [27]

    Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N 2014 Sol. Energy 110 781

    [28]

    Chan D, Phillips J, Phang J 1986 Solid State Electron. 29 329

    [29]

    Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 455

    [30]

    Batzelis E, Papathanassiou A 2016 IEEE Trans. Sustain. Energ. 7 504

    [31]

    Chenni R, Makhlouf M, Kerbache T, Bouzid A 2007 Energy 32 1724

    [32]

    Lun S, Du C, Yang G, Wang S, Guo T 2013 Sol. Energy 92 147

    [33]

    Ouennoughi Z, Chegaar M 1999 Solid State Electron. 43 1985

    [34]

    Sze S M, Kwok K N 2007 Physics of Semiconductor Devices (3rd Ed.) (Hoboken:John Wiley Sons) pp663-743

    [35]

    Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Solar Energy 4 1

    [36]

    Chegaar M, Ouennoughi Z, Hoffmann A 2001 Solid State Electron. 45 293

    [37]

    Rasool F, Drieberg M, Badruddin N, Singh B S M 2017 Sol. Energy 153 519

    [38]

    Chouder A, Silvestre S, Sadaoui N, Rahmani L 2012 Simul. Model. Pract. Th. 20 46

    [39]

    Rahman S, Varma R, Vanderheide T 2014 IET Renew. Power Gen. 8 217

    [40]

    Dolara, A, Leva S, Manzolini G 2015 Sol. Energy 119 83

    [41]

    Jain A, Kapoor A 2004 Sol. Energ. Mater. Sol. Cells 81 269

    [42]

    Zhang C, Zhang J, Hao Y, Lin Z, Zhu C 2011 J. Appl. Phys. 110 199

    [43]

    Khan F, Singh S, Husain M 2010 Sol. Energ. Mat. Sol. C. 94 1473

    [44]

    Ghani F, Rosengarten G, Duke M, Carson J 2014 Renew. Energ. 72 105

    [45]

    Carrero C, Rodriguez J, Ramirez D, Platero C 2010 Renew. Energ. 35 1103

    [46]

    Xiao W B, Liu M M, Yan C 2017 J. Nanoelectron. Optoelec. 12 189

    [47]

    Chen Y, Wang X, Li D, Hong R, Shen H 2011 Appl. Energ. 88 2239

    [48]

    Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131

    [49]

    Saleem H, Karmalkar S 2009 IEEE Electr. Device Lett. 30 349

    [50]

    Karmalkar S, Saleem H 2011 Sol. Energ. Mater. Sol. Cells 95 1076

    [51]

    Singh N, Jain A, Kapoor A 2009 Sol. Energ. Mater. Sol. Cells 93 1423

    [52]

    Perovich S M, Simic S K, Tosic D V, Bauk S I 2007 Appl. Math. Lett. 20 493

    [53]

    Charles J P, Abdelkrim M, Muoy Y H, Mialhe P 1981 Solar Cells 4 169

    [54]

    Jain A, Kapoor A 2005 Sol. Energ. Mater. Sol. Cells 85 391

    [55]

    Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S 2015 J, Renew. Sustain. Ener. 7 950

    [56]

    Mallick S P, Dash D P, Mallik S, Roshan R, Mahata S 2017 Sol. Energy 153 360

    [57]

    Akbaba M, Aiattawi M 1995 Sol. Energ. Mater. Sol. Cells 37 123

    [58]

    Cavassilas N, Michelini F, Bescond M 2014 J. Renew. Sustain. Ener. 6 65

    [59]

    Ma T, Yang H, Lu L 2014 Sol. Energy 100 31

    [60]

    Bellia H, Youcef R, Fatima M 2014 NRIAG J. A. G. 3 53

    [61]

    Bonkoungou D, Koalaga Z, Njomo D, Zougmore F 2015 Int. J. Current Engineer. Technol. 5 3735

    [62]

    Jervase J, Bourdoucen H, Al-Lawati A 2001 Meas. Sci. Technol. 12 1922

    [63]

    Sellai A, Ouennoughi Z 2005 Int. J. Mod. Phys. C 16 1043

    [64]

    Patel Sanjaykumar J, Panchal Ashish K, Kheraj V 2013 J. Nano-Electro. Phys. 5 02008

    [65]

    Sellami A, Zagrouba M, Bouacha M, Bessas B 2007 Meas. Sci. Technol. 18 1472

    [66]

    Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860

    [67]

    Gaing Z L 2003 IEEE Trans. Power Syst. 18 1187

    [68]

    Macabebe E, Sheppard C, Dyk E 2011 Sol. Energy 85 12

    [69]

    Munji M K, Okullo W, Dyk E, Vorster F 2010 Sol. Energ. Mater. Sol. Cells 94 2129

    [70]

    Ye M, Wang X, Xu Y 2009 J. Appl. Phys. 105 1948

    [71]

    Alhajri M, El-Naggar K, Al-Rashidi M, Al-Othman A 2012 Renew. Energ. 44 238

    [72]

    Rao R V, Savsani V J, Vakharia D P 2011 Comput. Aided Design 43 303

    [73]

    Patel S, Panchal A, Kheraj V 2014 Appl. Energ. 119 384

    [74]

    Singh K, Kho K, Rita S 2014 Int. J. Computat. Sci. Appl. 4 101

    [75]

    Laudani A, Lozito G, Fulginei F, Salvini A 2015 Int. J. Photoenergy 205 1

    [76]

    Laudani A, Fulginei F, Salvini A, Lozito G, Coco S 2014 Int. J. Photoenergy 204 1

    [77]

    Rajasekar N, Kumar N, Venugopalan R 2013 Sol. Energy 97 255

    [78]

    Guo L, Meng Z, Sun Y, Wang L 2016 Energ. Convers. Manage. 108 520

    [79]

    Ma J, Bi Z, Ting T, Hao S, Hao W 2016 Sol. Energy 132 606

    [80]

    Humada A, Hojabri M, Mekhilef S, Hamada H 2016 Renew. Sust. Energ. Rev. 56 494

    [81]

    Boutana N, Mellit A, Lughi V, Pavan A 2017 Energy 122 128

    [82]

    Bana S, Saini R 2017 Renew. Energ. 101 1299

  • [1] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [2] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [3] 高献坤, 姚传安, 高向川, 余泳昌. 光伏电池组件隐式、显式单二极管模型准确性对比研究. 物理学报, 2014, 63(17): 178401. doi: 10.7498/aps.63.178401
    [4] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [5] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [6] 闫冠华, 颜鹏程, 侯威, 吴浩. 一种基于Logistic模型的突变过程性分析方法及其应用. 物理学报, 2013, 62(7): 079202. doi: 10.7498/aps.62.079202
    [7] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理. 物理学报, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [8] 王玉玲, 孙以泽, 彭乐乐, 徐洋. 基于Lambert W函数的太阳能电池组件参数确定法. 物理学报, 2012, 61(24): 248402. doi: 10.7498/aps.61.248402
    [9] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [10] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [11] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [12] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [13] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [14] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] 葛霁, 金智, 苏永波, 程伟, 刘新宇, 吴德馨. 一种InP双异质结双极晶体管小信号物理模型及其提取方法. 物理学报, 2009, 58(12): 8584-8590. doi: 10.7498/aps.58.8584
    [16] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [17] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [20] 刘海文, 孙晓玮, 程知群, 车延峰, 李征帆. GaInP/GaAs异质结双极晶体管小信号模型参数提取的新方法. 物理学报, 2003, 52(9): 2298-2303. doi: 10.7498/aps.52.2298
计量
  • 文章访问数:  6034
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-26
  • 修回日期:  2018-06-25
  • 刊出日期:  2018-10-05

/

返回文章
返回