搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的航天器外露介质充电模型

原青云 王松

引用本文:
Citation:

一种新的航天器外露介质充电模型

原青云, 王松

A new charging model for exposed dielectric of spacecraft

Yuan Qing-Yun, Wang Song
PDF
导出引用
  • 为综合考虑高能电子辐射与周围等离子体对航天器外露介质充电的影响,在航天器内带电模型的基础上,通过添加边界充电电流来考虑等离子体与航天器介质表面的相互作用,并统一参考电位为等离子体零电位,建立了航天器外露介质充电模型,给出了新模型的一维稳态解法,并与表面充电模型和深层充电模型进行了对比分析.结果表明:新建模型能够综合考虑表面入射电流、深层沉积电流和传导电流对充电的耦合作用过程,实现外露介质表面和深层耦合充电计算,有利于全面评估航天器外露介质的充电问题.
    In order to consider comprehensively the effects of high-energy electron radiation and space plasma on the exposed dielectrics outside a spacecraft, in this paper, a model named surface and internal coupling charging model for the exposed dielectric of spacecraft is proposed, and its numerical solution is obtained. It is based on the deep dielectric charging model, with considering the interaction between the exposed dielectric surface and the ambient plasma by adding an incident charging current into the boundary in the proposed model, and the potential of infinite plasma is regarded as the referential potential (zero potential). The determinate solution of the model is analyzed and a numerical solution in one-dimensional case is provided by using an iterative algorithm to overcome the coupling between electric field and conductivity. The solution includes the potential of spacecraft body, the distribution of dielectric potential, and the electric field. Moreover, the new model is compared with surface charging model and internal charging model. The results show that the new model has an advatage of depicting the electric field exactly with respect to the surface charging model; if the internal deposition current is equal to zero, the new model degenerates into the one depicting the surface charging. It considers the effect of surface potential on charging results compared with the internal charging model. The three kinds of currents, namely the surface incident current, the internal deposition current and the leakage current, are considered comprehensively in the new model. Among them, the leakage current is the most complicated, which is determined by the potential and the dielectric conductivity affected by the electric field, radiation dose rate, and temperature. Using this new model, the surface and internal coupling charging simulation of the exposed dielectric can be performed. Therefore, the new model can provide a more comprehensive assessment for the charging of exposed dielectric of spacecraft.
      通信作者: 原青云, qingyuny@163.com
    • 基金项目: 国家自然科学基金(批准号:51577190)、装备预研重点基金(批准号:61402090201)和电磁环境效应国家级重点实验室基金(批准号:614220501020117)资助的课题.
      Corresponding author: Yuan Qing-Yun, qingyuny@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577190), Equipment Preresearch Key Foundation, China (Grant No. 61402090201), and the Key Laboratory of Electromagnetic Environment Effect Foundation of China (Grant No. 614220501020117).
    [1]

    Mazur J E, Fennell J F, Roeder J L, O'Brien P T, Guild T B, Likar J J 2012 IEEE Trans. Plasma Sci. 40 237

    [2]

    Roeder J L, Fennell J F 2009 IEEE Trans. Plasma Sci. 37 281

    [3]

    Lai S T, Tautz M 2006 J. Geophys. Res. 111 338

    [4]

    Green N W, Dennison J R 2008 IEEE Trans. Plasma Sci. 36 2482

    [5]

    Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061

    [6]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017

    [7]

    Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

    [8]

    Huang J G, Chen D (in Chinese) [黄建国, 陈东 2004 地球物理学报 47 442]

    [9]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]

    [10]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401]

    [11]

    Yuan Q Y, Sun Y W, Cai H F, Liu C L (in Chinese) [原青云, 孙永卫, 曹鹤飞, 刘存礼 2013 高电压技术 39 2392]

    [12]

    Lai S T 2012 Fundamentals of Spacecraft Charging:Spacecraft Interactions with Space Plasmas (Princeton:Princeton University Press)

    [13]

    Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201 (in Chinese) [王松, 武占成, 唐小金, 孙永卫, 易忠 2016 物理学报 65 025201]

    [14]

    Wang S, Tang X J, Wu Z C, Yi Z 2016 Chin. J. Space Sci. 36 202 (in Chinese) [王松, 唐小金, 武占成, 易忠 2016 空间科学学报 36 202]

    [15]

    Wang S, Tang X J, Sun Y W, Wu Z C, Yi Z (in Chinese) [王松, 唐小金, 孙永卫, 武占成, 易忠 2016 高电压技术 42 1429]

    [16]

    Wang S, Tang X J, Wu Z C, Yi Z 2015 IEEE Trans. Plasma Sci. 43 4169

    [17]

    Wang S, Wu Z C, Tang X J, Yi Z (in Chinese) [王松, 武占成, 唐小金, 易忠 2015 航天器环境工程 32 268]

    [18]

    Garrett H B 1981 Rev. Geophys. Space Phys. 9 577

    [19]

    Labonte K 1982 IEEE Trans. Nucl. Sci. 29 1650

    [20]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [21]

    Help:EQUIPOT spacecraft surface charging code [online] Available:https://www.spenvis.oma.be/, accessed Mar. 1, 2010 [2018-3-26]

    [22]

    Katz I, Mandell M, Jongeward G 1986 J. Geophys. Research 91 739

    [23]

    Thibault B, Jeanty-Ruard B, Souquet P 2015 IEEE Trans. Plasma Sci. 43 2782

    [24]

    Jean-Charles M V, Theillaumas B, Svoz M 2015 IEEE Trans. Plasma Sci. 43 2808

    [25]

    ECSS-E-ST-10-04C-2008 Space Engineering- Space Environment 2008 p46

  • [1]

    Mazur J E, Fennell J F, Roeder J L, O'Brien P T, Guild T B, Likar J J 2012 IEEE Trans. Plasma Sci. 40 237

    [2]

    Roeder J L, Fennell J F 2009 IEEE Trans. Plasma Sci. 37 281

    [3]

    Lai S T, Tautz M 2006 J. Geophys. Res. 111 338

    [4]

    Green N W, Dennison J R 2008 IEEE Trans. Plasma Sci. 36 2482

    [5]

    Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061

    [6]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017

    [7]

    Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

    [8]

    Huang J G, Chen D (in Chinese) [黄建国, 陈东 2004 地球物理学报 47 442]

    [9]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]

    [10]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401]

    [11]

    Yuan Q Y, Sun Y W, Cai H F, Liu C L (in Chinese) [原青云, 孙永卫, 曹鹤飞, 刘存礼 2013 高电压技术 39 2392]

    [12]

    Lai S T 2012 Fundamentals of Spacecraft Charging:Spacecraft Interactions with Space Plasmas (Princeton:Princeton University Press)

    [13]

    Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201 (in Chinese) [王松, 武占成, 唐小金, 孙永卫, 易忠 2016 物理学报 65 025201]

    [14]

    Wang S, Tang X J, Wu Z C, Yi Z 2016 Chin. J. Space Sci. 36 202 (in Chinese) [王松, 唐小金, 武占成, 易忠 2016 空间科学学报 36 202]

    [15]

    Wang S, Tang X J, Sun Y W, Wu Z C, Yi Z (in Chinese) [王松, 唐小金, 孙永卫, 武占成, 易忠 2016 高电压技术 42 1429]

    [16]

    Wang S, Tang X J, Wu Z C, Yi Z 2015 IEEE Trans. Plasma Sci. 43 4169

    [17]

    Wang S, Wu Z C, Tang X J, Yi Z (in Chinese) [王松, 武占成, 唐小金, 易忠 2015 航天器环境工程 32 268]

    [18]

    Garrett H B 1981 Rev. Geophys. Space Phys. 9 577

    [19]

    Labonte K 1982 IEEE Trans. Nucl. Sci. 29 1650

    [20]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [21]

    Help:EQUIPOT spacecraft surface charging code [online] Available:https://www.spenvis.oma.be/, accessed Mar. 1, 2010 [2018-3-26]

    [22]

    Katz I, Mandell M, Jongeward G 1986 J. Geophys. Research 91 739

    [23]

    Thibault B, Jeanty-Ruard B, Souquet P 2015 IEEE Trans. Plasma Sci. 43 2782

    [24]

    Jean-Charles M V, Theillaumas B, Svoz M 2015 IEEE Trans. Plasma Sci. 43 2808

    [25]

    ECSS-E-ST-10-04C-2008 Space Engineering- Space Environment 2008 p46

  • [1] 许亮亮, 蔡明辉, 杨涛, 韩建伟. SMILE卫星的表面充电效应. 物理学报, 2020, 69(16): 165203. doi: 10.7498/aps.69.20200044
    [2] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究. 物理学报, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [3] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [4] 张妩帆, 赵强. 太阳强迫厄尔尼诺/南方涛动充电振子模型的Hopf分岔与混沌. 物理学报, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [5] 李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜. 高能电子辐射下聚四氟乙烯深层充电特性. 物理学报, 2014, 63(20): 209401. doi: 10.7498/aps.63.209401
    [6] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题. 物理学报, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [7] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究 . 物理学报, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [8] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境非偏置固体表面带电研究. 物理学报, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [9] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电效应的物理过程及特征. 物理学报, 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [10] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电事件的机理研究. 物理学报, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [11] 李盛涛, 李国倡, 闵道敏, 赵妮. 入射电子能量对低密度聚乙烯深层充电特性的影响. 物理学报, 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [12] 赵强, 刘式适, 刘式达. 一类厄尔尼诺-南方涛动充电-放电振子模型研究 . 物理学报, 2012, 61(22): 220201. doi: 10.7498/aps.61.220201
    [13] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析. 物理学报, 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [14] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [15] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [16] 孙吉勇, 黄尚廉, 张 洁, 张智海. 介质层充电对光栅光调制器驱动的影响. 物理学报, 2008, 57(6): 3600-3606. doi: 10.7498/aps.57.3600
    [17] 李雪春, 王友年. 介质靶表面的充电效应对等离子体浸没离子注入过程中鞘层特性的影响. 物理学报, 2004, 53(8): 2666-2669. doi: 10.7498/aps.53.2666
    [18] 黄建国, 陈 东. 不同接地方式的卫星介质深层充电研究. 物理学报, 2004, 53(5): 1611-1616. doi: 10.7498/aps.53.1611
    [19] 黄建国, 陈 东. 卫星中介质深层充电特征研究. 物理学报, 2004, 53(3): 961-966. doi: 10.7498/aps.53.961
    [20] 夏钟福, 王毓德, 丁亥, 杨国茂, 时东兵, 孙熙民. 聚酯的高温电晕充电和电荷在体内的输运. 物理学报, 1991, 40(12): 1986-1991. doi: 10.7498/aps.40.1986
计量
  • 文章访问数:  2547
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-07-18
  • 刊出日期:  2018-10-05

一种新的航天器外露介质充电模型

  • 1. 陆军工程大学, 电磁环境效应国家级重点实验室, 石家庄 050003;
  • 2. 63618部队, 库尔勒 841000
  • 通信作者: 原青云, qingyuny@163.com
    基金项目: 国家自然科学基金(批准号:51577190)、装备预研重点基金(批准号:61402090201)和电磁环境效应国家级重点实验室基金(批准号:614220501020117)资助的课题.

摘要: 为综合考虑高能电子辐射与周围等离子体对航天器外露介质充电的影响,在航天器内带电模型的基础上,通过添加边界充电电流来考虑等离子体与航天器介质表面的相互作用,并统一参考电位为等离子体零电位,建立了航天器外露介质充电模型,给出了新模型的一维稳态解法,并与表面充电模型和深层充电模型进行了对比分析.结果表明:新建模型能够综合考虑表面入射电流、深层沉积电流和传导电流对充电的耦合作用过程,实现外露介质表面和深层耦合充电计算,有利于全面评估航天器外露介质的充电问题.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回