搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开放式法布里-珀罗光学微腔中光与单量子系统的相互作用

裴思辉 宋子旋 林星 方伟

引用本文:
Citation:

开放式法布里-珀罗光学微腔中光与单量子系统的相互作用

裴思辉, 宋子旋, 林星, 方伟

Interaction between light and single quantum-emitter in open Fabry-Perot microcavity

Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei
PDF
HTML
导出引用
  • 光与物质相互作用的过程具有丰富的物理内涵, 不仅有助于理解光的本质, 更可以提供一种有效操控物质的手段. 开放式光学微腔具有光场强局域性、频率域和空间域的可调谐性以及光纤可集成性等特点, 为研究微腔内的光与物质相互作用提供了一个理想平台. 本文首先介绍基于开放式法布里-珀罗微腔的腔量子电动力学系统的基本特性, 然后介绍开放式法布里-珀罗微腔结构的制备方法, 进而从弱耦合、强耦合和差发射体三方面着重介绍近年来开放式微腔与固态单量子系统相互作用的研究工作, 最后进行了总结与展望.
    The interaction between light and matter has attracted much attention not only for fundamental research but also for applications. The open Fabry-Perot cavity provides an excellent platform for such a study due to strong optical confinement, spectral and spatial and tunability, and the feasibility of optical fiber integration. In this review, first, the basic properties of open Fabry-Perot cavities and the fabrication techniques are introduced. Then recent progress of weak coupling, strong coupling and bad emitter regimes is discussed. Finally, the challenges to and perspectives in this respect are presented.
      通信作者: 林星, lxing@zju.edu.cn ; 方伟, wfang08@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB2200404)、国家自然科学基金(批准号: 62035013, 61635009, 62075192)和中央高校基本科研业务费专项资金(批准号: 2021QNA5006).
      Corresponding author: Lin Xing, lxing@zju.edu.cn ; Fang Wei, wfang08@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200404), the National Natural Science Foundation of China (Grant Nos. 62035013, 61635009, 62075192), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2021QNA5006).
    [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Bitarafan M, DeCorby R 2017 Sensors 17 1748Google Scholar

    [3]

    Purcell E 1946 Phys. Rev. 69 681

    [4]

    Wang H, He Y M, Chung T H, Hu H, Yu Y, Chen S, Ding X, Chen M C, Qin J, Yang X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S, Höfling S, Lu C Y, Pan J W 2019 Nat. Photonics 13 770Google Scholar

    [5]

    Tomm N, Javadi A, Antoniadis N O, Najer D, Lobl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399Google Scholar

    [6]

    Baba T, Sano D 2003 IEEE J. Sel. Top. Quant. 9 1340Google Scholar

    [7]

    Altug H, Englund D, Vučković J 2006 Nat. Phys. 2 484Google Scholar

    [8]

    Li X, Gu Q 2019 Adv. Phys. X 4 1658541Google Scholar

    [9]

    Walther H, Varcoe B T H, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [10]

    Bajoni D, Senellart P, Wertz E, Sagnes I, Miard A, Lemaitre A, Bloch J 2008 Phys. Rev. Lett. 100 047401Google Scholar

    [11]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [12]

    Muller A, Flagg E B, Metcalfe M, Lawall J, Solomon G S 2009 Appl. Phys. Lett. 95 173101Google Scholar

    [13]

    Barbour R J, Dalgarno P A, Curran A, Nowak K M, Baker H J, Hall D R, Stoltz N G, Petroff P M, Warburton R J 2011 J. Appl. Phys. 110 053107Google Scholar

    [14]

    Di Z, Jones H V, Dolan P R, Fairclough S M, Wincott M B, Fill J, Hughes G M, Smith J M 2012 New J. Phys. 14 103048Google Scholar

    [15]

    Muljarov E A, Langbein W 2016 Phys. Rev. B 94 235438Google Scholar

    [16]

    Coccioli R, Boroditsky M, Yablonovitch E, Rahmat-Samii Y, Kim K W 1998 IEE Proc.-Optoelectron. 145 391Google Scholar

    [17]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [18]

    Andreani L C, Panzarini G, Gérard J M 1999 Phys. Rev. B 60 13276Google Scholar

    [19]

    Bitarafan M H, DeCorby R G 2017 Appl. Opt. 56 9992Google Scholar

    [20]

    Wang D 2021 J. Phys. B: At., Mol. Opt. Phys. 54 133001Google Scholar

    [21]

    Gerry C C, Knight P L 2005 Introductory Quantum Optics (New York: Cambridge University Press)

    [22]

    Rasero D A, Portacio A A, Villamil P E, Rodríguez B A 2021 Physica E 129 114645Google Scholar

    [23]

    Harder M, Hu C M 2018 Solid State Phys. 69 47Google Scholar

    [24]

    Fox M 2006 Quantum Optics (Oxford: Oxford University Press)

    [25]

    Qing P, Gong J, Lin X, Yao N, Shen W, Rahimi-Iman A, Fang W, Tong L 2019 Appl. Phys. Lett. 114 021106Google Scholar

    [26]

    Greuter L, Starosielec S, Najer D, Ludwig A, Duempelmann L, Rohner D, Warburton R J 2014 Appl. Phys. Lett. 105 121105Google Scholar

    [27]

    Kelkar H, Wang D, Martín-Cano D, Hoffmann B, Christiansen S, Götzinger S, Sandoghdar V 2015 Phys. Rev. Appl. 4 054010Google Scholar

    [28]

    Potts C A, Melnyk A, Ramp H, Bitarafan M H, Vick D, LeBlanc L J, Davis J P, DeCorby R G 2016 Appl. Phys. Lett. 108 041103Google Scholar

    [29]

    Zhou K, Cui J M, Huang Y F, Wang Z, Qian Z H, Wu Q M, Wang J, He R, Lv W M, Hu C K, Han Y J, Li C F, Guo G C 2017 Chin. Phys. Lett. 34 013701Google Scholar

    [30]

    Yokoshi N, Imamura H, Kosaka H 2013 Phys. Rev. B 88 155321Google Scholar

    [31]

    Wang D, Kelkar H, Martin-Cano D, Rattenbacher D, Shkarin A, Utikal T, Götzinger S, Sandoghdar V 2019 Nat. Phys. 15 483Google Scholar

    [32]

    Flatten L C, Trichet A A P, Smith J M 2016 Laser Photonics Rev. 10 257Google Scholar

    [33]

    Trichet A A, Dolan P R, Coles D M, Hughes G M, Smith J M 2015 Opt. Express 23 17205Google Scholar

    [34]

    Dolan P R, Hughes G M, Grazioso F, Patton B R, Smith J M 2010 Opt. Lett. 35 3556Google Scholar

    [35]

    Li F, Li Y, Cai Y, Li P, Tang H, Zhang Y 2019 Adv. Quantum Technol. 2 1900060Google Scholar

    [36]

    Trupke M, Hinds E A, Eriksson S, Curtis E A, Moktadir Z, Kukharenka E, Kraft M 2005 Appl. Phys. Lett. 87 211106Google Scholar

    [37]

    Cui G, Hannigan J M, Loeckenhoff R, Matinaga F M, Raymer M G, Bhongale S, Holland M, Mosor S, Chatterjee S, Gibbs H M, Khitrova G 2006 Opt. Express 14 2289Google Scholar

    [38]

    Steinmetz T, Colombe Y, Hunger D, Hänsch T W, Balocchi A, Warburton R J, Reichel J 2006 Appl. Phys. Lett. 89 111110Google Scholar

    [39]

    Pennington R C, D'Alessandro G, Baumberg J J, Kaczmarek M 2007 Opt. Lett. 32 3131Google Scholar

    [40]

    Patel C K N 1964 Phys. Rev. 136 A1187Google Scholar

    [41]

    Lai M H, Lim K S, Gunawardena D S, Lee Y S, Ahmad H 2017 IEEE Sens. J. 17 2961Google Scholar

    [42]

    Madić M, Radovanović M, Manić M, Trajanović M 2014 Tribol. Ind. 36 236

    [43]

    Bharatish A, Narasimha Murthy H N, Anand B, Madhusoodana C D, Praveena G S, Krishna M 2013 Opt. Laser Technol. 53 22Google Scholar

    [44]

    Benyounis K Y, Olabi A G, Hashmi M S J 2005 J. Mater. Process. Technol. 164–165 978Google Scholar

    [45]

    MarkillieG A J, Baker H J, VillarrealF J, HallD R 2002 Appl. Opt. 41 5660Google Scholar

    [46]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [47]

    Hunger D, Deutsch C, Barbour R J, Warburton R J, Reichel J 2012 AIP Adv. 2 012119Google Scholar

    [48]

    Brandstatter B, McClung A, Schuppert K, Casabone B, Friebe K, Stute A, Schmidt P O, Deutsch C, Reichel J, Blatt R, Northup T E 2013 Rev. Sci. Instrum. 84 123104Google Scholar

    [49]

    Najer D, Renggli M, Riedel D, Starosielec S, Warburton R J 2017 Appl. Phys. Lett. 110 011101Google Scholar

    [50]

    Cui J M, Zhou K, Zhao M S, Ai M Z, Hu C K, Li Q, Liu B H, Peng J L, Huang Y F, Li C F, Guo G C 2018 Appl. Phys. Lett. 112 171105Google Scholar

    [51]

    Albrecht R, Bommer A, Pauly C, Mücklich F, Schell A W, Engel P, Schröder T, Benson O, Reichel J, Becher C 2014 Appl. Phys. Lett. 105 073113Google Scholar

    [52]

    Trichet A A P, Dolan P R, Smith J M 2018 J. Opt. 20 035402Google Scholar

    [53]

    Walker B T, Ash B J, Trichet A A P, Smith J M, Nyman R A 2021 Opt. Express 29 10800Google Scholar

    [54]

    Macleod H A 2001 Thin-Film Optical Filters (3rd Ed.) (Bristol and Philadelphia: Institute of Physics Publishing)

    [55]

    Greuter L, Najer D, Kuhlmann A V, Valentin S R, Ludwig A, Wieck A D, Starosielec S, Warburton R J 2015 J. Appl. Phys. 118 075705Google Scholar

    [56]

    Palekar C C, Rahimi-Iman A 2021 Phys. Status Solidi-R. 15 2100182Google Scholar

    [57]

    Benedikter J, Kaupp H, Hümmer T, Liang Y, Bommer A, Becher C, Krueger A, Smith J M, Hänsch T W, Hunger D 2017 Phys. Rev. Appl. 7 024031Google Scholar

    [58]

    Romshin A M, Kudryavtsev O S, Pasternak D G, Ekimov E A, Vlasov I I 2020 J. Phys.: Conf. Ser. 1461 012142Google Scholar

    [59]

    Najer D, Sollner I, Sekatski P, Dolique V, Lobl M C, Riedel D, Schott R, Starosielec S, Valentin S R, Wieck A D, Sangouard N, Ludwig A, Warburton R J 2019 Nature 575 622Google Scholar

    [60]

    Tomm N, Korsch A R, Javadi A, Najer D, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Phys. Rev. Appl. 15 054061Google Scholar

    [61]

    Herzog T, Böhrkircher S, Both S, Fischer M, Sittig R, Jetter M, Portalupi S L, Weiss T, Michler P 2020 Phys. Rev. B 102 235306Google Scholar

    [62]

    Johnson S, Dolan P R, Grange T, Trichet A A P, Hornecker G, Chen Y C, Weng L, Hughes G M, Watt A A R, Auffèves A, Smith J M 2015 New J. Phys. 17 122003Google Scholar

    [63]

    Riedel D, Söllner I, Shields B J, Starosielec S, Appel P, Neu E, Maletinsky P, Warburton R J 2017 Phys. Rev. X 7 031040Google Scholar

    [64]

    Steiner M, Meyer H M, Deutsch C, Reichel J, Kohl M 2013 Phys. Rev. Lett. 110 043003Google Scholar

    [65]

    Peter E, Senellart P, Martrou D, Lemaitre A, Hours J, Gerard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401Google Scholar

    [66]

    Srinivasan K, Michael C P, Perahia R, Painter O 2008 Phys. Rev. A 78 033839Google Scholar

    [67]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200Google Scholar

    [68]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [69]

    Plenio M B, Huelga S F, Beige A, Knight P L 1999 Phys. Rev. A 59 2468Google Scholar

    [70]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488Google Scholar

    [71]

    Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2012 Nat. Photonics 6 93Google Scholar

    [72]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [73]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2012 Nat. Photonics 6 605Google Scholar

    [74]

    Koch M, Sames C, Balbach M, Chibani H, Kubanek A, Murr K, Wilk T, Rempe G 2011 Phys. Rev. Lett. 107 023601Google Scholar

    [75]

    Tanji-Suzuki H, Chen W, Landig R, Simon J, Vuletic V 2011 Science 333 1266Google Scholar

    [76]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062Google Scholar

    [77]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [78]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [79]

    Ota Y, Takamiya D, Ohta R, Takagi H, Kumagai N, Iwamoto S, Arakawa Y 2018 Appl. Phys. Lett. 112 093101Google Scholar

    [80]

    Miguel-Sánchez J, Reinhard A, Togan E, Volz T, Imamoglu A, Besga B, Reichel J, Estève J 2013 New J. Phys. 15 045002Google Scholar

    [81]

    Greuter L, Starosielec S, Kuhlmann A V, Warburton R J 2015 Phys. Rev. B 92 045302Google Scholar

    [82]

    Pscherer A, Meierhofer M, Wang D, Kelkar H, Martin-Cano D, Utikal T, Gotzinger S, Sandoghdar V 2021 Phys. Rev. Lett. 127 133603Google Scholar

    [83]

    Dumeige Y, Alléaume R, Grangier P, Treussart F, Roch J F 2011 New J. Phys. 13 025015Google Scholar

    [84]

    Dolan P R, Adekanye S, Trichet A A P, Johnson S, Flatten L C, Chen Y C, Weng L, Hunger D, Chang H C, Castelletto S, Smith J M 2018 Opt. Express 26 7056Google Scholar

    [85]

    Casabone B, Deshmukh C, Liu S, Serrano D, Ferrier A, Hummer T, Goldner P, Hunger D, de Riedmatten H 2021 Nat. Commun. 12 3570Google Scholar

    [86]

    Vadia S, Scherzer J, Thierschmann H, Schäfermeier C, Dal Savio C, Taniguchi T, Watanabe K, Hunger D, Karraï K, Högele A 2021 PRX Quantum 2 040318Google Scholar

  • 图 1  腔与TLS耦合的原理图. 该系统可通过3个参数进行描述: $ g, \kappa $$ \gamma $, 它们分别量化了TLS与腔的耦合、腔损耗速率以及TLS的非共振自发辐射

    Fig. 1.  Schematic diagram of the operational principle for TLS coupling to the cavity. The system is described by three parameters:$ g $, $ \kappa $, and$ \gamma $ which quantify the cavity-TLS coupling, the photon decay from the cavity, and the non-resonant spontaneous emission of the TLS, respectively.

    图 2  JC模型下腔与TLS耦合前后的能级示意图. 当TLS与腔内光子共振时, 该系统的能级发生劈裂, 且劈裂量会随着腔内光子数的增大而增大

    Fig. 2.  States of the cavity-two level system coupled system described by JC model. When the TLS comes into resonance with optical modes of the cavity, a generated energy level of the system will split into two with an energy difference. The magnitude of the splitting increases with the number of photons stored in the cavity.

    图 3  开放式FP微腔的基本结构 (a), (b) 基于光纤端面的开放式FP微腔, 其中(a)光纤-光纤型[17], (b)光纤-芯片型[25]; (c)基于芯片的开放式FP微腔[26]

    Fig. 3.  Basic structure of open FP microcavity. (a), (b) Open FP microcavity based on fiber end face: (a) Fiber-fiber type[17]; (b) fiber-chip type[25]. (c) chip-based open FP microcavity[26].

    图 4  早期的开放式FP微腔结构 (a)利用湿法刻蚀制备的第一个光纤-芯片型开放式FP微腔[36]; (b)利用气泡法制备光滑凹面结构[37]; (c) 利用转移技术制备的光纤型开放式FP微腔[38]; (d) 利用乳胶球辅助电化学沉积技术制备的凹面尺寸可控的微腔[39]

    Fig. 4.  Early open FP microcavity structures: (a) The first fiber-chip type open FP microcavity fabricated by wet etching[36] ; (b) preparation of smooth concave structure by bubble method[37]; (c) fiber type FP microcavity fabricated by transfer technique[38]; (d) microcavity with controllable concave size prepared by latex ball assisted electrochemical deposition technique[39].

    图 5  早期利用CO2激光烧蚀法构建光纤型FP腔的工作[17] (a)微腔结构示意图; (b) CO2激光脉冲处理后光纤端面的扫描电子显微镜图; (c) 利用干涉显微镜得到的曲面形貌(实线)与理想高斯形貌(虚线)的差别

    Fig. 5.  Early fiber-type FP microcavity made by CO2 laser ablation method[17]: (a) Schematic diagram of cavity structure; (b) scanning electron microscope image of fiber endface after CO2 laser pulse treatment; (c) surface topography (solid line) obtained by interference microscope and an ideal Gaussian profile (dotted line).

    图 6  最早利用FIB刻蚀法制备芯片型开放式FP微腔的工作[34] (a)腔结构示意图; (b)凹面阵列的扫描电子显微镜照片; (c)原子力显微镜得到的曲面面型(蓝线)以及拟合的光滑曲面(绿线), 面型粗糙度约0.7 nm

    Fig. 6.  The earliest chip-type FP microcavity made by FIB etching technique[34]: (a) Schematic diagram of cavity structure; (b) scanning electron microscope image of the processed concave mirror array; (c) surface profile (blue line) obtained by atomic force microscope and the fitting curve (green line). The surface roughness is 0.7 nm.

    图 7  可实现强耦合的典型量子点-腔系统[80] (a)量子点-腔系统结构; (b)为了控制量子点的电荷, 量子点层下面的n掺杂GaAs层与其上面的p掺杂GaAs层一起形成p-i-n二极管结构; (c)通过调节腔长优化量子点和腔之间的耦合, 基于该平台得到了具有反交叉特征的共振透射光谱

    Fig. 7.  Typical quantum dot (QD)-cavity system in which the strong coupling could be observed[80]: (a) Setup of the QD-cavity system; (b) the n-doped GaAs layer below the QD layer and the p-doped GaAs layer above forming a p-i-n diode structure, which is used to control the charge state of the QDs; (c) the cavity length is adjusted to optimize the coupling between the QD and the cavity, an anti-crossing in resonant transmission spectroscopy is observed.

    图 8  差发射体区域Purcell因子与模式体积的关系[14], 其中离散点为实验数据, 实线是将有效$ Q $值代入(14)式计算得到

    Fig. 8.  Purcell enhancement as a function of mode volume in bad emitter regime[14]. The discrete points are derived from the experimental data, and the solid line is calculated by substituting the effective Q value into Eq.(14).

    表 1  开放式FP微腔的性能比较

    Table 1.  Performance comparison of open FP microcavities.

    制备方法反射膜层结构年份$\mathit{L}/\text{μm }$$\mathit{R}/\text{μm }$$ \mathit{F} $文献
    湿法刻蚀Au光纤型2005$ 20—200 $$ 185 $$ ~100 $[36]
    气泡法DBR芯片型2006$ 40—60 $$ 40—100 $$ 200 $[37]
    转移法DBR光纤型2006$ 27 $$ 1000 $$ 1050 $[38]
    电化学沉积Au芯片型2007$ 6.5—9.7 $$ 10 $$ ~15 $[39]
    CO2激光烧蚀DBR光纤型2007$ 38.6 $$ 150 $$ 37000 $[46]
    DBR光纤型2010$ 20—60 $$ 40—2000 $$ 38600 $[17]
    DBR光纤型2012$ 20—2000 $$ 20—2000 $$ 100000 $[47]
    DBR光纤型2013$ 206 $$ 209 $$ 45000 $[48]
    DBR芯片型2014$ 1.34 $$ 10 $$ 15000 $[26]
    DBR芯片型2017$ 1.33 $$ ~5 $$ 25000 $[49]
    DBR光纤型2017$ 100 $$ 200—360 $$ 1300 $[29]
    DBR光纤型2018$ 20 $$ 66 $$ 40000 $[50]
    DBR光纤型2019$ 4 $$ 43 $$ ~60 $[25]
    FIB刻蚀DBR芯片型2010$ 3—13 $$ 5—25 $$ 460 $[34]
    DBR芯片型2012$ 1.6 $$ 7 $$ ~1280 $[14]
    DBR光纤型2014$ 5.6 $$ 14.1 $$ 3600 $[51]*
    DBR芯片型2015$ 1.55 $$ 4.3 $$ ~1000 $[33]
    DBR芯片型2016$ 3 $$ 6 $$ ~1000 $[32]
    DBR芯片型2018$ 2.2 $$ ~10 $[52]
    DBR芯片型20211$ 2500 $[53]
    注: 1)所选取微腔参数范围是对应文献典型微腔的参数, 并非涉及文献中所有微腔; 2)部分文献未直接给出F的值, 这里根据(3)式和(4)式进行换算; 3)带*标注是指文献[51]引用参数对应微腔一个端镜由FIB刻蚀产生, 另一个由CO2激光烧蚀产生; 4)这里R指的是微腔两面端镜的曲率半径中较小的.
    下载: 导出CSV

    表 2  开放式FP微腔在弱耦合中的典型应用

    Table 2.  Typical applications of open FP microcavity in weak coupling regime.

    年份结构加工方法量子体系$ {F}_{\mu } $文献
    2009光纤型转移法InAs量子点[12]
    2011芯片型激光烧蚀AlGaAs量子点1.6[13]
    2015芯片型FIB刻蚀InGaAs量子点2.54[55]
    2015芯片型FIB刻蚀NV色心6.25*[62]
    2017芯片型激光烧蚀NV色心>30*[63]
    2021芯片型激光烧蚀InGaAs量子点12[5]
    注: 针对NV色心零声子线辐射速率的增强倍率.
    下载: 导出CSV

    表 3  开放式FP微腔在强耦合中的典型应用

    Table 3.  Typical applications of open FP microcavity in strong coupling regime.

    年份结构加工方法量子体系$ \mathrm{协}\mathrm{同}\mathrm{参}\mathrm{数}C $$ Q $文献
    2013光纤型激光烧蚀InGaAs量子点2.0±1.330000[80]
    2015光纤型激光烧蚀InAs量子点5.560000[81]
    2019芯片型激光烧蚀InAs量子点150170000[59]
    2019光纤型FIB刻蚀DBT分子12.7120000[31]
    2021光纤型FIB刻蚀DBT分子45120000[82]
    下载: 导出CSV
  • [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Bitarafan M, DeCorby R 2017 Sensors 17 1748Google Scholar

    [3]

    Purcell E 1946 Phys. Rev. 69 681

    [4]

    Wang H, He Y M, Chung T H, Hu H, Yu Y, Chen S, Ding X, Chen M C, Qin J, Yang X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S, Höfling S, Lu C Y, Pan J W 2019 Nat. Photonics 13 770Google Scholar

    [5]

    Tomm N, Javadi A, Antoniadis N O, Najer D, Lobl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399Google Scholar

    [6]

    Baba T, Sano D 2003 IEEE J. Sel. Top. Quant. 9 1340Google Scholar

    [7]

    Altug H, Englund D, Vučković J 2006 Nat. Phys. 2 484Google Scholar

    [8]

    Li X, Gu Q 2019 Adv. Phys. X 4 1658541Google Scholar

    [9]

    Walther H, Varcoe B T H, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [10]

    Bajoni D, Senellart P, Wertz E, Sagnes I, Miard A, Lemaitre A, Bloch J 2008 Phys. Rev. Lett. 100 047401Google Scholar

    [11]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [12]

    Muller A, Flagg E B, Metcalfe M, Lawall J, Solomon G S 2009 Appl. Phys. Lett. 95 173101Google Scholar

    [13]

    Barbour R J, Dalgarno P A, Curran A, Nowak K M, Baker H J, Hall D R, Stoltz N G, Petroff P M, Warburton R J 2011 J. Appl. Phys. 110 053107Google Scholar

    [14]

    Di Z, Jones H V, Dolan P R, Fairclough S M, Wincott M B, Fill J, Hughes G M, Smith J M 2012 New J. Phys. 14 103048Google Scholar

    [15]

    Muljarov E A, Langbein W 2016 Phys. Rev. B 94 235438Google Scholar

    [16]

    Coccioli R, Boroditsky M, Yablonovitch E, Rahmat-Samii Y, Kim K W 1998 IEE Proc.-Optoelectron. 145 391Google Scholar

    [17]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [18]

    Andreani L C, Panzarini G, Gérard J M 1999 Phys. Rev. B 60 13276Google Scholar

    [19]

    Bitarafan M H, DeCorby R G 2017 Appl. Opt. 56 9992Google Scholar

    [20]

    Wang D 2021 J. Phys. B: At., Mol. Opt. Phys. 54 133001Google Scholar

    [21]

    Gerry C C, Knight P L 2005 Introductory Quantum Optics (New York: Cambridge University Press)

    [22]

    Rasero D A, Portacio A A, Villamil P E, Rodríguez B A 2021 Physica E 129 114645Google Scholar

    [23]

    Harder M, Hu C M 2018 Solid State Phys. 69 47Google Scholar

    [24]

    Fox M 2006 Quantum Optics (Oxford: Oxford University Press)

    [25]

    Qing P, Gong J, Lin X, Yao N, Shen W, Rahimi-Iman A, Fang W, Tong L 2019 Appl. Phys. Lett. 114 021106Google Scholar

    [26]

    Greuter L, Starosielec S, Najer D, Ludwig A, Duempelmann L, Rohner D, Warburton R J 2014 Appl. Phys. Lett. 105 121105Google Scholar

    [27]

    Kelkar H, Wang D, Martín-Cano D, Hoffmann B, Christiansen S, Götzinger S, Sandoghdar V 2015 Phys. Rev. Appl. 4 054010Google Scholar

    [28]

    Potts C A, Melnyk A, Ramp H, Bitarafan M H, Vick D, LeBlanc L J, Davis J P, DeCorby R G 2016 Appl. Phys. Lett. 108 041103Google Scholar

    [29]

    Zhou K, Cui J M, Huang Y F, Wang Z, Qian Z H, Wu Q M, Wang J, He R, Lv W M, Hu C K, Han Y J, Li C F, Guo G C 2017 Chin. Phys. Lett. 34 013701Google Scholar

    [30]

    Yokoshi N, Imamura H, Kosaka H 2013 Phys. Rev. B 88 155321Google Scholar

    [31]

    Wang D, Kelkar H, Martin-Cano D, Rattenbacher D, Shkarin A, Utikal T, Götzinger S, Sandoghdar V 2019 Nat. Phys. 15 483Google Scholar

    [32]

    Flatten L C, Trichet A A P, Smith J M 2016 Laser Photonics Rev. 10 257Google Scholar

    [33]

    Trichet A A, Dolan P R, Coles D M, Hughes G M, Smith J M 2015 Opt. Express 23 17205Google Scholar

    [34]

    Dolan P R, Hughes G M, Grazioso F, Patton B R, Smith J M 2010 Opt. Lett. 35 3556Google Scholar

    [35]

    Li F, Li Y, Cai Y, Li P, Tang H, Zhang Y 2019 Adv. Quantum Technol. 2 1900060Google Scholar

    [36]

    Trupke M, Hinds E A, Eriksson S, Curtis E A, Moktadir Z, Kukharenka E, Kraft M 2005 Appl. Phys. Lett. 87 211106Google Scholar

    [37]

    Cui G, Hannigan J M, Loeckenhoff R, Matinaga F M, Raymer M G, Bhongale S, Holland M, Mosor S, Chatterjee S, Gibbs H M, Khitrova G 2006 Opt. Express 14 2289Google Scholar

    [38]

    Steinmetz T, Colombe Y, Hunger D, Hänsch T W, Balocchi A, Warburton R J, Reichel J 2006 Appl. Phys. Lett. 89 111110Google Scholar

    [39]

    Pennington R C, D'Alessandro G, Baumberg J J, Kaczmarek M 2007 Opt. Lett. 32 3131Google Scholar

    [40]

    Patel C K N 1964 Phys. Rev. 136 A1187Google Scholar

    [41]

    Lai M H, Lim K S, Gunawardena D S, Lee Y S, Ahmad H 2017 IEEE Sens. J. 17 2961Google Scholar

    [42]

    Madić M, Radovanović M, Manić M, Trajanović M 2014 Tribol. Ind. 36 236

    [43]

    Bharatish A, Narasimha Murthy H N, Anand B, Madhusoodana C D, Praveena G S, Krishna M 2013 Opt. Laser Technol. 53 22Google Scholar

    [44]

    Benyounis K Y, Olabi A G, Hashmi M S J 2005 J. Mater. Process. Technol. 164–165 978Google Scholar

    [45]

    MarkillieG A J, Baker H J, VillarrealF J, HallD R 2002 Appl. Opt. 41 5660Google Scholar

    [46]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [47]

    Hunger D, Deutsch C, Barbour R J, Warburton R J, Reichel J 2012 AIP Adv. 2 012119Google Scholar

    [48]

    Brandstatter B, McClung A, Schuppert K, Casabone B, Friebe K, Stute A, Schmidt P O, Deutsch C, Reichel J, Blatt R, Northup T E 2013 Rev. Sci. Instrum. 84 123104Google Scholar

    [49]

    Najer D, Renggli M, Riedel D, Starosielec S, Warburton R J 2017 Appl. Phys. Lett. 110 011101Google Scholar

    [50]

    Cui J M, Zhou K, Zhao M S, Ai M Z, Hu C K, Li Q, Liu B H, Peng J L, Huang Y F, Li C F, Guo G C 2018 Appl. Phys. Lett. 112 171105Google Scholar

    [51]

    Albrecht R, Bommer A, Pauly C, Mücklich F, Schell A W, Engel P, Schröder T, Benson O, Reichel J, Becher C 2014 Appl. Phys. Lett. 105 073113Google Scholar

    [52]

    Trichet A A P, Dolan P R, Smith J M 2018 J. Opt. 20 035402Google Scholar

    [53]

    Walker B T, Ash B J, Trichet A A P, Smith J M, Nyman R A 2021 Opt. Express 29 10800Google Scholar

    [54]

    Macleod H A 2001 Thin-Film Optical Filters (3rd Ed.) (Bristol and Philadelphia: Institute of Physics Publishing)

    [55]

    Greuter L, Najer D, Kuhlmann A V, Valentin S R, Ludwig A, Wieck A D, Starosielec S, Warburton R J 2015 J. Appl. Phys. 118 075705Google Scholar

    [56]

    Palekar C C, Rahimi-Iman A 2021 Phys. Status Solidi-R. 15 2100182Google Scholar

    [57]

    Benedikter J, Kaupp H, Hümmer T, Liang Y, Bommer A, Becher C, Krueger A, Smith J M, Hänsch T W, Hunger D 2017 Phys. Rev. Appl. 7 024031Google Scholar

    [58]

    Romshin A M, Kudryavtsev O S, Pasternak D G, Ekimov E A, Vlasov I I 2020 J. Phys.: Conf. Ser. 1461 012142Google Scholar

    [59]

    Najer D, Sollner I, Sekatski P, Dolique V, Lobl M C, Riedel D, Schott R, Starosielec S, Valentin S R, Wieck A D, Sangouard N, Ludwig A, Warburton R J 2019 Nature 575 622Google Scholar

    [60]

    Tomm N, Korsch A R, Javadi A, Najer D, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Phys. Rev. Appl. 15 054061Google Scholar

    [61]

    Herzog T, Böhrkircher S, Both S, Fischer M, Sittig R, Jetter M, Portalupi S L, Weiss T, Michler P 2020 Phys. Rev. B 102 235306Google Scholar

    [62]

    Johnson S, Dolan P R, Grange T, Trichet A A P, Hornecker G, Chen Y C, Weng L, Hughes G M, Watt A A R, Auffèves A, Smith J M 2015 New J. Phys. 17 122003Google Scholar

    [63]

    Riedel D, Söllner I, Shields B J, Starosielec S, Appel P, Neu E, Maletinsky P, Warburton R J 2017 Phys. Rev. X 7 031040Google Scholar

    [64]

    Steiner M, Meyer H M, Deutsch C, Reichel J, Kohl M 2013 Phys. Rev. Lett. 110 043003Google Scholar

    [65]

    Peter E, Senellart P, Martrou D, Lemaitre A, Hours J, Gerard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401Google Scholar

    [66]

    Srinivasan K, Michael C P, Perahia R, Painter O 2008 Phys. Rev. A 78 033839Google Scholar

    [67]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200Google Scholar

    [68]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [69]

    Plenio M B, Huelga S F, Beige A, Knight P L 1999 Phys. Rev. A 59 2468Google Scholar

    [70]

    Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488Google Scholar

    [71]

    Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2012 Nat. Photonics 6 93Google Scholar

    [72]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [73]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2012 Nat. Photonics 6 605Google Scholar

    [74]

    Koch M, Sames C, Balbach M, Chibani H, Kubanek A, Murr K, Wilk T, Rempe G 2011 Phys. Rev. Lett. 107 023601Google Scholar

    [75]

    Tanji-Suzuki H, Chen W, Landig R, Simon J, Vuletic V 2011 Science 333 1266Google Scholar

    [76]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062Google Scholar

    [77]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [78]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [79]

    Ota Y, Takamiya D, Ohta R, Takagi H, Kumagai N, Iwamoto S, Arakawa Y 2018 Appl. Phys. Lett. 112 093101Google Scholar

    [80]

    Miguel-Sánchez J, Reinhard A, Togan E, Volz T, Imamoglu A, Besga B, Reichel J, Estève J 2013 New J. Phys. 15 045002Google Scholar

    [81]

    Greuter L, Starosielec S, Kuhlmann A V, Warburton R J 2015 Phys. Rev. B 92 045302Google Scholar

    [82]

    Pscherer A, Meierhofer M, Wang D, Kelkar H, Martin-Cano D, Utikal T, Gotzinger S, Sandoghdar V 2021 Phys. Rev. Lett. 127 133603Google Scholar

    [83]

    Dumeige Y, Alléaume R, Grangier P, Treussart F, Roch J F 2011 New J. Phys. 13 025015Google Scholar

    [84]

    Dolan P R, Adekanye S, Trichet A A P, Johnson S, Flatten L C, Chen Y C, Weng L, Hunger D, Chang H C, Castelletto S, Smith J M 2018 Opt. Express 26 7056Google Scholar

    [85]

    Casabone B, Deshmukh C, Liu S, Serrano D, Ferrier A, Hummer T, Goldner P, Hunger D, de Riedmatten H 2021 Nat. Commun. 12 3570Google Scholar

    [86]

    Vadia S, Scherzer J, Thierschmann H, Schäfermeier C, Dal Savio C, Taniguchi T, Watanabe K, Hunger D, Karraï K, Högele A 2021 PRX Quantum 2 040318Google Scholar

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [3] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控. 物理学报, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [4] 郑赟杰, 王晨阳, 谢双媛, 许静平, 羊亚平. 含多个相干耦合人工原子的单模腔的输入输出特性. 物理学报, 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [5] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征. 物理学报, 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [6] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [7] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用. 物理学报, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [8] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [9] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响. 物理学报, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [10] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [11] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建. 物理学报, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [12] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [13] 吕江涛, 王凤文, 马振鹤, 司光远. 基于法布里-珀罗腔的纳米环滤光器. 物理学报, 2013, 62(5): 057804. doi: 10.7498/aps.62.057804
    [14] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [15] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [16] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩. 光纤光栅法布里-珀罗腔的V-I传输矩阵法研究. 物理学报, 2010, 59(12): 8615-8624. doi: 10.7498/aps.59.8615
    [17] 王 冬, 陈代兵, 范植开, 邓景康. HEM11模磁绝缘线振荡器的高频分析. 物理学报, 2008, 57(8): 4875-4882. doi: 10.7498/aps.57.4875
    [18] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究. 物理学报, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [19] 赖振讲, 杨志勇, 白晋涛, 孙中禹. 二能级原子与相干态腔场相互作用过程中的纠缠交换. 物理学报, 2004, 53(11): 3733-3738. doi: 10.7498/aps.53.3733
    [20] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
计量
  • 文章访问数:  10451
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-23
  • 修回日期:  2021-11-26
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回