-
在回顾并分析了用Newton力学、Lagrange和Hamilton力学建立连续介质波动力学方程的基础上,提出了在能量守恒框架下建立波动力学方程的新思路与方法。首先,回顾了用牛顿第二定律推导波动力学方程,同时回顾并分析了利用Hamilton变分原理,推导了在连续介质中的Lagrange方程、Hamilton正则方程,以及相应的波动力学方程;其次,在能量守恒的框架下,建立了连续介质的Lagrange方程、Hamilton正则方程和波动力学方程,并证明了其结果与利用经典力学推导的结果的一致性,特别地,澄清了用Hamilton变分原理建立保守系统下连续介质的Lagrange方程和Hamilton正则方程时在边界条件应用时的一些模糊认识。在能量守恒框架下建立一系列动力学方程,为我们在不涉及泛函求极值的变分原理等基础上刻画和表述复杂介质中波动现象的演化规律提供了另一种途径,也深入探讨了最小作用原理的物理本质。最后,在能量守恒的框架下给出了建立粘弹性介质中的波动力学微分方程的应用。
-
关键词:
- 波动力学方程 /
- Hamilton变分原理 /
- Lagrange方程 /
- 能量守恒
Based on the analysis of establishing dynamic equations by using Newton mechanics, Lagrange and Hamilton mechanics, a new idea of establishing dynamic equations under the framework of energy conservation is proposed. Firstly, the use of Newton’s second law to derive wave equations of motion is introduced. Secondly, the Lagrange equation, Hamilton canonical equation, and the corresponding dynamical equations in a continuum are derived by using Hamilton’s variational principle. Thirdly, under the framework of energy conservation, the Lagrange equation, Hamilton canonical equation, and acoustic dynamics equation of continuum are established, and the results are proved to be consistent with those derived from classical mechanics. Some of fuzzy understandings when using Hamilton's variational principle to establish Lagrange’s equation and Hamilton’s canonical equation, are clarified. A series of dynamical equations established under the framework of energy conservation provides alternative way to characterize and represent the propagation characteristics of wave motions in various complex media without involving the variational principle of functional extremum. Finally, as an application example, the differential equation of dynamics in viscoelastic medium is given under the framework of energy conservation.-
Keywords:
- Dynamical equation /
- Hamilton variational principle /
- Lagrange equation /
- law of conservation of energy
-
[1] Gurtin M E 1964 Arch. Rational Mech. Anal. 16 34
[2] Tiersten H F 1969 Linear piezoelectric plate vibrations (New York: Plenum Press) pp33-35, pp43-46
[3] Achenbach J D 1975 Wave propagation in elastic solids (Netherland: Elsevier) pp51-65
[4] Babich V M, Kiselev A P 2015 Elastic Waves High Frequency Theory (Boca Raton: CRC Press) pp8-10
[5] Shtrikman Z S 1962 J. Mech. Phys. Solids 10 335
[6] Zhang H L 1985 Acta Acustica 10 223 (in Chinese)[张海澜 1985 声学学报 10 223]
[7] Liu H C, Li S M 2006 Classical Mechanics (Hefei: University of Science and Technology of China Press) p233, p240 (in Chinese)[刘惠川, 李书明 2006 经典力 学(合肥:中国科学技术大学出版社) 第233, 240页
[8] EerNisse E P, Holland R 1967 Proceedings of the IEEE p1524
[9] Luan P 2018 J. Phys. Commun. 2 075016
[10] Civelek C, Bechteler T F 2008 Int. J. Eng. Sci. 46 1218
[11] Luan P 2020 Crystals 10 863
[12] Gueorguiev V G, Maeder A 2021 Symmetry 13 522
[13] Moiseiwitsch B L 2004 Variational principles (New York: Dover Publications) pp82-83
[14] Cline D 2019 Variational principles in classic mechanics (Rochester: University of Rochester) pp181-184, p443
[15] Tang L M 1991 Chin. J. Comput. Mech. 8 343 (in Chinese)[唐立民 1991 计算 结构力学及其应用 8 343]
[16] Landau L D, Lifshitz E M 1976 Mechanics (Oxford: Butterworth-Heinemann) p14, p131
[17] Lanczos C 1986 The Variational Principles of Mechanics(4th Edition) (New York: Dover) pp120-122
[18] Arnold I V 1997 Mathematical Methods of Classical Mechanics(2nd Edition) (New York: Springer) pp59-60
[19] Goldstein H, Poole C P, Safko J L 2013 Classical Mechanics(3rd Edition) (Essex: Pearson Education Limited) p35
[20] Morita S 2016 World J. Mech. 6 84
[21] Huang Y C 2003 Mech. Res. Commun. 30 567
[22] Huang Y C 2005 Acta. Phys. Sin. 54 3473 (in Chinese)[黄永畅 2005 物理学报 54 3473]
[23] Huang Y C, Lee X G, Shao M X 2006 Mod. Phys. Lett. A 21 1107
[24] Huang C and Huang Y C 2020 doi: 10.20944/preprints202008.0334.v3
[25] Bondar D I, Cabrera R, Lompay R R, Ivanov M Y, Rabitz H A 2012 Phys. Rev. Lett. 109 190403
[26] Morse P M, Feshbach H 1953 Methods of theoretical physics (York: The Maple Press Company) p151, pp280-304
[27] Kim J, Dargush G F, Ju Y K 2013 Int. J. Solids Struct. 50 3418
[28] Riewe F 1996 Phys. Rev. E. 53 1890
[29] Lin X S 2002 J. Shantou Univ. (Nat. Sci. Ed.) 17 63 (in Chinese)[林旭升 2002 汕头大学学报(自然科学版) 17 63]
[30] Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p12 (in Chinese)[张海澜 2012 理论声学(修订版) (北京: 高等教育出版社) 第12页]
[31] Zhou P 2015 arXiv:1512.04487[physics.gen-ph]
[32] Lindsay G A 1952 Am. J. Phys. 20 86.
[33] Courant R, Hilbert D 1953 Methods of Mathematical Physics (Vol. 1) (New York: Interscience) pp208-211
[34] Gelfand I M, Fomin S V 1963 Calculus of variations (Englewood Cliffs: Prentice-Hall) p42, p71
[35] Zia R K P, Redish E F, McKay S R 2009 Am. J. Phys. 77 614
[36] Ansermet J P, Brechet S 2018 Principles of Thermodynamics (New York: Cambridge University Press) p3
[37] Ruderman M S 2019 Fluid dynamics and linear elasticity-A first course in continuum mechanics (Cham: Springer) p40, p58, pp61-62
[38] Maxwell J C 1867 Phil. Trans. Roy. Soc. London 157 49
[39] Carcione J 2015 Wave fields in real media: Wave propagation in anisotropic, anelastic porous and electromagnetic media (Netherlands: Elsevier) p66
[40] Wang X M, Dodds K, Zhao H B 2006 Explor. Geophys. 37 160
计量
- 文章访问数: 810
- PDF下载量: 30
- 被引次数: 0